13 research outputs found

    Priming of microglia in a DNA-repair deficient model of accelerated aging

    Get PDF
    AbstractAging is associated with reduced function, degenerative changes, and increased neuroinflammation of the central nervous system (CNS). Increasing evidence suggests that changes in microglia cells contribute to the age-related deterioration of the CNS. The most prominent age-related change of microglia is enhanced sensitivity to inflammatory stimuli, referred to as priming. It is unclear if priming is due to intrinsic microglia ageing or induced by the ageing neural environment. We have studied this in Ercc1 mutant mice, a DNA repair-deficient mouse model that displays features of accelerated aging in multiple tissues including the CNS. In Ercc1 mutant mice, microglia showed hallmark features of priming such as an exaggerated response to peripheral lipopolysaccharide exposure in terms of cytokine expression and phagocytosis. Specific targeting of the Ercc1 deletion to forebrain neurons resulted in a progressive priming response in microglia exemplified by phenotypic alterations. Summarizing, these data show that neuronal genotoxic stress is sufficient to switch microglia from a resting to a primed state

    Brain antigens in functionally distinct antigen-presenting cell populations in cervical lymph nodes in MS and EAE

    Get PDF
    Drainage of central nervous system (CNS) antigens to the brain-draining cervical lymph nodes (CLN) is likely crucial in the initiation and control of autoimmune responses during multiple sclerosis (MS). We demonstrate neuronal antigens within CLN of MS patients. In monkeys and mice with experimental autoimmune encephalomyelitis (EAE) and in mouse models with non-inflammatory CNS damage, the type and extent of CNS damage was associated with the frequencies of CNS antigens within the cervical lymph nodes. In addition, CNS antigens drained to the spinal-cord-draining lumbar lymph nodes. In human MS CLN, neuronal antigens were present in pro-inflammatory antigen-presenting cells (APC), whereas the majority of myelin-containing cells were anti-inflammatory. This may reflect a different origin of the cells or different drainage mechanisms. Indeed, neuronal antigen-containing cells in human CLN did not express the lymph node homing receptor CCR7, whereas myelin antigen-containing cells in situ and in vitro did. Nevertheless, CLN from EAE-affected CCR7-deficient mice contained equal amounts of myelin and neuronal antigens as wild-type mice. We conclude that the type and frequencies of CNS antigens within the CLN are determined by the type and extent of CNS damage. Furthermore, the presence of myelin and neuronal antigens in functionally distinct APC populations within MS CLN suggests that differential immune responses can be evoked

    CCL21-induced calcium transients and proliferation in primary mouse astrocytes:CXCR3-dependent and independent responses

    No full text
    CCL21 is a homeostatic chemokine that is expressed constitutively in secondary lymph nodes and attracts immune cells via chemokine receptor CCR7. In the brain however, CCL21 is inducibly expressed in damaged neurons both in vitro and in vivo and has been shown to activate microglia in vitro, albeit not through CCR7 but through chemokine receptor CXCR3. Therefore, a role for CCL21 in CXCR3-mediated neuron-microglia signaling has been proposed. It is well established that human and mouse astrocytes, like microglia, express CXCR3. However, effects of CCL21 on astrocytes have not been investigated yet. In this study, we have examined the effects of CCL21 on calcium transients and proliferation in primary mouse astrocytes. We show that similar to CXCR3-ligand CXCL10, CCL21 (10(-9) M and 10(-8) M) induced calcium transients in astrocytes, which were mediated through CXCR3. However, in response to high concentrations of CCL21 (10(-7) M) calcium transients persisted in CXCR3-deficient astrocytes, whereas CXCL10 did not have any effect in these cells. Furthermore, prolonged exposure to CXCL10 or CCL21 promoted proliferation of wild type astrocytes. Although CXCL10-induced proliferation was absent in CXCR3-deficient astrocytes, CCL21-induced proliferation of these cells did not significantly differ from wild type conditions. It is therefore suggested that primary mouse astrocytes express an additional (chemokine-) receptor, which is activated at high CCL21 concentrations. (C) 2009 Elsevier Inc. All rights reserved

    Enhanced microglial pro-inflammatory response to lipopolysaccharide correlates with brain infiltration and blood-brain barrier dysregulation in a mouse model of telomere shortening

    Get PDF
    Microglia are a proliferative population of resident brain macrophages that under physiological conditions self-renew independent of hematopoiesis. Microglia are innate immune cells actively surveying the brain and are the earliest responders to injury. During aging, microglia elicit an enhanced innate immune response also referred to as 'priming'. To date, it remains unknown whether telomere shortening affects the proliferative capacity and induces priming of microglia. We addressed this issue using early (first-generation G1 mTerc(-/-))- and late-generation (third-generation G3 and G4 mTerc(-/-)) telomerase-deficient mice, which carry a homozygous deletion for the telomerase RNA component gene (mTerc). Late-generation mTerc(-/-) microglia show telomere shortening and decreased proliferation efficiency. Under physiological conditions, gene expression and functionality of G3 mTerc(-/-) microglia are comparable with microglia derived from G1 mTerc(-/-) mice despite changes in morphology. However, after intraperitoneal injection of bacterial lipopolysaccharide (LPS), G3 mTerc(-/-) microglia mice show an enhanced proinflammatory response. Nevertheless, this enhanced inflammatory response was not accompanied by an increased expression of genes known to be associated with age-associated microglia priming. The increased inflammatory response in microglia correlates closely with increased peripheral inflammation, a loss of blood-brain barrier integrity, and infiltration of immune cells in the brain parenchyma in this mouse model of telomere shortening

    Interleukin-6 upregulates neuronal adenosine A(1) receptors: Implications for neuromodulation and neuroprotection

    No full text
    The immunological response in the brain is crucial to overcome neuropathological events. Some inflammatory mediators, such as the immunoregulatory cytokine interleukin-6 (IL-6) affect neuromodulation and may also play protective roles against various noxious conditions. However, the fundamental mechanisms underlying the long-term effects of IL-6 in the brain remain unclear. We now report that IL-6 increases the expression and function of the neuronal adenosine A(1) receptor, with relevant consequences to synaptic transmission and neuroprotection. IL-6-induced amplification of A(1) receptor function enhances the responses to readily released adenosine during hypoxia, enables neuronal rescue from glutamate-induced death, and protects animals from chemically induced convulsing seizures. Taken together, these results suggest that IL-6 minimizes the consequences of excitotoxic episodes on brain function through the enhancement of endogenous adenosinergic signaling

    Microglia states and nomenclature: A field at its crossroads

    No full text
    Microglial research has advanced considerably in recent decades yet has been constrained by a rolling series of dichotomies such as “resting versus activated” and “M1 versus M2.” This dualistic classification of good or bad microglia is inconsistent with the wide repertoire of microglial states and functions in development, plasticity, aging, and diseases that were elucidated in recent years. New designations continuously arising in an attempt to describe the different microglial states, notably defined using transcriptomics and proteomics, may easily lead to a misleading, although unintentional, coupling of categories and functions. To address these issues, we assembled a group of multidisciplinary experts to discuss our current understanding of microglial states as a dynamic concept and the importance of addressing microglial function. Here, we provide a conceptual framework and recommendations on the use of microglial nomenclature for researchers, reviewers, and editors, which will serve as the foundations for a future white paper
    corecore