4 research outputs found

    Recovery of Virulent and RNase-Negative Attenuated Type 2 Bovine Viral Diarrhea Viruses from Infectious cDNA Clones

    No full text
    Cloned cDNA derived from the genome of the virulent type 2 bovine viral diarrhea virus (BVDV) strain NY'93/C was sequenced and served for establishment of the infectious cDNA clone pKANE40A. Virus recovered from pKANE40A exhibited growth characteristics similar to those of wild-type BVDV NY'93/C and proved to be clinically indistinguishable from the wild-type virus in animal experiments. A virus mutant in which the RNase residing in the viral glycoprotein E(rns) was inactivated, revealed an attenuated phenotype. The plasmid pKANE40A represents the first infectious cDNA clone established for a type 2 BVDV and offers a variety of new approaches to analyze the mechanisms of BVDV-induced disease in cattle

    Bovine Viral Diarrhea Virus: Prevention of Persistent Fetal Infection by a Combination of Two Mutations Affecting E(rns) RNase and N(pro) Protease

    No full text
    Different genetically engineered mutants of bovine viral diarrhea virus (BVDV) were analyzed for the ability to establish infection in the fetuses of pregnant heifers. The virus mutants exhibited either a deletion of the overwhelming part of the genomic region coding for the N-terminal protease N(pro), a deletion of codon 349, which abrogates the RNase activity of the structural glycoprotein E(rns), or a combination of both mutations. Two months after infection of pregnant cattle with wild-type virus or either of the single mutants, the majority of the fetuses contained virus or were aborted or found dead in the uterus. In contrast, the double mutant was not recovered from fetal tissues after a similar challenge, and no dead fetuses were found. This result was verified with a nonrelated BVDV containing similar mutations. After intrauterine challenge with wild-type virus, mutated viruses, and cytopathogenic BVDV, all viruses could be detected in fetal tissue after 5, 7, and 14 days. Type 1 interferon (IFN) could be detected in fetal serum after challenge, except with wild-type noncytopathogenic BVDV. On days 7 and 14 after challenge, the largest quantities of IFN in fetal serum were induced by the N(pro) and RNase-negative double mutant virus. The longer duration of fetal infection with the double mutant resulted in abortion. Therefore, for the first time, we have demonstrated the essential role of both N(pro) and E(rns) RNase in blocking interferon induction and establishing persistent infection by a pestivirus in the natural host

    Delivery of self-amplifying RNA vaccines in in vitro reconstituted virus-like particles.

    No full text
    Many mRNA-based vaccines have been investigated for their specific potential to activate dendritic cells (DCs), the highly-specialized antigen-presenting cells of the immune system that play a key role in inducing effective CD4+ and CD8+ T-cell responses. In this paper we report a new vaccine/gene delivery platform that demonstrates the benefits of using a self-amplifying ("replicon") mRNA that is protected in a viral-protein capsid. Purified capsid protein from the plant virus Cowpea Chlorotic Mottle Virus (CCMV) is used to in vitro assemble monodisperse virus-like particles (VLPs) containing reporter proteins (e.g., Luciferase or eYFP) or the tandem-repeat model antigen SIINFEKL in RNA gene form, coupled to the RNA-dependent RNA polymerase from the Nodamura insect virus. Incubation of immature DCs with these VLPs results in increased activation of maturation markers - CD80, CD86 and MHC-II - and enhanced RNA replication levels, relative to incubation with unpackaged replicon mRNA. Higher RNA uptake/replication and enhanced DC activation were detected in a dose-dependent manner when the CCMV-VLPs were pre-incubated with anti-CCMV antibodies. In all experiments the expression of maturation markers correlates with the RNA levels of the DCs. Overall, these studies demonstrate that: VLP protection enhances mRNA uptake by DCs; coupling replicons to the gene of interest increases RNA and protein levels in the cell; and the presence of anti-VLP antibodies enhances mRNA levels and activation of DCs in vitro. Finally, preliminary in vivo experiments involving mouse vaccinations with SIINFEKL-replicon VLPs indicate a small but significant increase in antigen-specific T cells that are doubly positive for IFN and TFN induction
    corecore