138 research outputs found

    Muscarinic Cholinergic and β-Adrenergic Contribution to Hindquarters Vasodilation and Cardiac Responses to Cocaine

    Full text link

    The Plasmodium falciparum rhoptry bulb protein RAMA plays an essential role in rhoptry neck morphogenesis and host red blood cell invasion

    Get PDF
    The malaria parasite Plasmodium falciparum invades, replicates within and destroys red blood cells in an asexual blood stage life cycle that is responsible for clinical disease and crucial for parasite propagation. Invasive malaria merozoites possess a characteristic apical complex of secretory organelles that are discharged in a tightly controlled and highly regulated order during merozoite egress and host cell invasion. The most prominent of these organelles, the rhoptries, are twinned, club-shaped structures with a body or bulb region that tapers to a narrow neck as it meets the apical prominence of the merozoite. Different protein populations localise to the rhoptry bulb and neck, but the function of many of these proteins and how they are spatially segregated within the rhoptries is unknown. Using conditional disruption of the gene encoding the only known glycolipid-anchored malarial rhoptry bulb protein, rhoptry-associated membrane antigen (RAMA), we demonstrate that RAMA is indispensable for blood stage parasite survival. Contrary to previous suggestions, RAMA is not required for trafficking of all rhoptry bulb proteins. Instead, RAMA-null parasites display selective mislocalisation of a subset of rhoptry bulb and neck proteins (RONs) and produce dysmorphic rhoptries that lack a distinct neck region. The mutant parasites undergo normal intracellular development and egress but display a fatal defect in invasion and do not induce echinocytosis in target red blood cells. Our results indicate that distinct pathways regulate biogenesis of the two main rhoptry sub-compartments in the malaria parasite

    Renal Denervation Update From the International Sympathetic Nervous System Summit:JACC State-of-the-Art Review

    Get PDF
    Three recent renal denervation studies in both drug-naïve and drug-treated hypertensive patients demonstrated a significant reduction of ambulatory blood pressure compared with respective sham control groups. Improved trial design, selection of relevant patient cohorts, and optimized interventional procedures have likely contributed to these positive findings. However, substantial variability in the blood pressure response to renal denervation can still be observed and remains a challenging and important problem. The International Sympathetic Nervous System Summit was convened to bring together experts in both experimental and clinical medicine to discuss the current evidence base, novel developments in our understanding of neural interplay, procedural aspects, monitoring of technical success, and others. Identification of relevant trends in the field and initiation of tailored and combined experimental and clinical research efforts will help to address remaining questions and provide much-needed evidence to guide clinical use of renal denervation for hypertension treatment and other potential indications

    The Plasmodium Export Element Revisited

    Get PDF
    We performed a bioinformatical analysis of protein export elements (PEXEL) in the putative proteome of the malaria parasite Plasmodium falciparum. A protein family-specific conservation of physicochemical residue profiles was found for PEXEL-flanking sequence regions. We demonstrate that the family members can be clustered based on the flanking regions only and display characteristic hydrophobicity patterns. This raises the possibility that the flanking regions may contain additional information for a family-specific role of PEXEL. We further show that signal peptide cleavage results in a positional alignment of PEXEL from both proteins with, and without, a signal peptide

    An Upstream Open Reading Frame Controls Translation of var2csa, a Gene Implicated in Placental Malaria

    Get PDF
    Malaria, caused by the parasite Plasmodium falciparum, is responsible for substantial morbidity, mortality and economic losses in tropical regions of the world. Pregnant women are exceptionally vulnerable to severe consequences of the infection, due to the specific adhesion of parasite-infected erythrocytes in the placenta. This adhesion is mediated by a unique variant of PfEMP1, a parasite encoded, hyper-variable antigen placed on the surface of infected cells. This variant, called VAR2CSA, binds to chondroitin sulfate A on syncytiotrophoblasts in the intervillous space of placentas. VAR2CSA appears to only be expressed in the presence of a placenta, suggesting that its expression is actively repressed in men, children or non-pregnant women; however, the mechanism of repression is not understood. Using cultured parasite lines and reporter gene constructs, we show that the gene encoding VAR2CSA contains a small upstream open reading frame that acts to repress translation of the resulting mRNA, revealing a novel form of gene regulation in malaria parasites. The mechanism underlying this translational repression is reversible, allowing high levels of protein translation upon selection, thus potentially enabling parasites to upregulate expression of this variant antigen in the presence of the appropriate host tissue

    Impact of Continuous Axenic Cultivation in Leishmania infantum Virulence

    Get PDF
    Experimental infections with visceral Leishmania spp. are frequently performed referring to stationary parasite cultures that are comprised of a mixture of metacyclic and non-metacyclic parasites often with little regard to time of culture and metacyclic purification. This may lead to misleading or irreproducible experimental data. It is known that the maintenance of Leishmania spp. in vitro results in a progressive loss of virulence that can be reverted by passage in a mammalian host. In the present study, we aimed to characterize the loss of virulence in culture comparing the in vitro and in vivo infection and immunological profile of L. infantum stationary promastigotes submitted to successive periods of in vitro cultivation. To evaluate the effect of axenic in vitro culture in parasite virulence, we submitted L. infantum promastigotes to 4, 21 or 31 successive in vitro passages. Our results demonstrated a rapid and significant loss of parasite virulence when parasites are sustained in axenic culture. Strikingly, the parasite capacity to modulate macrophage activation decreased significantly with the augmentation of the number of in vitro passages. We validated these in vitro observations using an experimental murine model of infection. A significant correlation was found between higher parasite burdens and lower number of in vitro passages in infected Balb/c mice. Furthermore, we have demonstrated that the virulence deficit caused by successive in vitro passages results from an inadequate capacity to differentiate into amastigote forms. In conclusion, our data demonstrated that the use of parasites with distinct periods of axenic in vitro culture induce distinct infection rates and immunological responses and correlated this phenotype with a rapid loss of promastigote differentiation capacity. These results highlight the need for a standard operating protocol (SOP) when studying Leishmania species

    Subcellular Location, Phosphorylation and Assembly into the Motor Complex of GAP45 during Plasmodium falciparum Schizont Development

    Get PDF
    An actomyosin motor complex assembled below the parasite's plasma membrane drives erythrocyte invasion by Plasmodium falciparum merozoites. The complex is comprised of several proteins including myosin (MyoA), myosin tail domain interacting protein (MTIP) and glideosome associated proteins (GAP) 45 and 50, and is anchored on the inner membrane complex (IMC), which underlies the plasmalemma. A ternary complex of MyoA, MTIP and GAP45 is formed that then associates with GAP50. We show that full length GAP45 labelled internally with GFP is assembled into the motor complex and transported to the developing IMC in early schizogony, where it accumulates during intracellular development until merozoite release. We show that GAP45 is phosphorylated by calcium dependent protein kinase 1 (CDPK1), and identify the modified serine residues. Replacing these serine residues with alanine or aspartate has no apparent effect on GAP45 assembly into the motor protein complex or its subcellular location in the parasite. The early assembly of the motor complex suggests that it has functions in addition to its role in erythrocyte invasion

    Cocaine Serves as a Peripheral Interoceptive Conditioned Stimulus for Central Glutamate and Dopamine Release

    Get PDF
    Intravenous injections of cocaine HCl are habit-forming because, among their many actions, they elevate extracellular dopamine levels in the terminal fields of the mesocorticolimbic dopamine system. This action, thought to be very important for cocaine's strong addiction liability, is believed to have very short latency and is assumed to reflect rapid brain entry and pharmacokinetics of the drug. However, while intravenous cocaine HCl has almost immediate effects on behavior and extracellular dopamine levels, recent evidence suggests that its central pharmacological effects are not evident until 10 or more seconds after IV injection. Thus the immediate effects of a given intravenous cocaine injection on extracellular dopamine concentration and behavior appear to occur before there is sufficient time for cocaine to act centrally as a dopamine uptake inhibitor. To explore the contribution of peripheral effects of cocaine to the early activation of the dopamine system, we used brain microdialysis to measure the effects of cocaine methiodide (MI)—a cocaine analogue that does not cross the blood brain barrier—on glutamate (excitatory) input to the dopamine cells. IP injections of cocaine MI were ineffective in cocaine-naïve animals but stimulated ventral tegmental glutamate release in rats previously trained to lever-press for cocaine HCl. This peripherally triggered glutamate input was sufficient to reinstate cocaine-seeking in previously trained animals that had undergone extinction of the habit. These findings offer an explanation for short-latency behavioral responses and immediate dopamine elevations seen following cocaine injections in cocaine-experienced but not cocaine-naïve animals

    Comparative Expression Profiling of Leishmania: Modulation in Gene Expression between Species and in Different Host Genetic Backgrounds

    Get PDF
    The single-celled parasite Leishmania, transmitted by sand flies in more than 88 tropical and sub-tropical countries globally, infects man and other mammals, causing a spectrum of diseases called the leishmaniases. Over 12 million people are currently infected worldwide with 2 million new cases reported each year. The type of leishmaniasis that develops in the mammalian host is dependent on the species of infecting parasite and the immune response to infection (that can be influenced by host genetic variation). Our research is focused on identifying parasite factors that contribute to pathogenicity in the host and understanding how these might differ between parasite species that give rise to the different clinical forms of leishmaniasis. Molecules of this type might lead to new therapeutic tools in the longer term. In this paper, we report a comparative analysis of gene expression profiles in three Leishmania species that give rise to different types of disease, focusing on the intracellular stages that reside in mammalian macrophages. Our results show that there are only a small number of differences between these parasite species, with host genetics playing only a minor role in influencing the parasites' response to their intracellular habitat. These small changes may be significant, however, in determining the clinical outcome of infection
    • …
    corecore