4,834 research outputs found

    Inhomogeneous reionization and the polarization of the cosmic microwave background

    Get PDF
    In a universe with inhomogeneous reionization, the ionized patches create a second order signal in the cosmic microwave background polarization anisotropy. This signal originates in the coupling of the free electron fluctuation to the quadruple moment of the temperature anisotropy. We examine the contribution from a simple inhomogeneous reionization model and find that the signal from such a process is below the detectable limits of the Planck Surveyor mission. However t he signal is above the fundamental uncertainty limit from cosmic variance, so th at a future detection with a high accuracy experiment on sub-arcminute scales is possible.Comment: 10 pages, 2 eps figures, final version accepted for publication in ApJ Letter

    Removing point sources from CMB maps

    Get PDF
    For high-precision cosmic microwave background (CMB) experiments, contamination from extragalactic point sources is a major concern. It is therefore useful to be able to detect and discard point source contaminated pixels using the map itself. We show that the sensitivity with which this can be done can often be greatly improved (by factors between 2.5 and 18 for the upcoming Planck mission) by a customized hi-pass filtering that suppresses fluctuations due to CMB and diffuse galactic foregrounds. This means that point source contamination will not severely degrade the cleanest Planck channels unless current source count estimates are off by more than an order of magnitude. A catalog of around 40,000 far infra-red sources at 857 GHz may be a useful by-product of Planck.Comment: 4 pages, with 2 figures included. Minor revisions to match accepted version. Color figure and links at http://www.sns.ias.edu/~max/cleaning.html (faster from the US), from http://www.mpa-garching.mpg.de/~max/cleaning.html (faster from Europe) or from [email protected], and Angelica's foreground links at http://www.sns.ias.edu/~angelica/foreground.htm

    The Detectability of Departures from the Inflationary Consistency Equation

    Full text link
    We study the detectability, given CMB polarization maps, of departures from the inflationary consistency equation, r \equiv T/S \simeq -5 n_T, where T and S are the tensor and scalar contributions to the quadrupole variance, respectively. The consistency equation holds if inflation is driven by a slowly-rolling scalar field. Departures can be caused by: 1) higher-order terms in the expansion in slow-roll parameters, 2) quantum loop corrections or 3) multiple fields. Higher-order corrections in the first two slow-roll parameters are undetectably small. Loop corrections are detectable if they are nearly maximal and r \ga 0.1. Large departures (|\Delta n_T| \ga 0.1) can be seen if r \ga 0.001. High angular resolution can be important for detecting non-zero r+5n_T, even when not important for detecting non-zero r.Comment: 7 pages, 4 figures, submitted to PR

    Imprint of Reionization on the Cosmic Microwave Background Bispectrum

    Get PDF
    We study contributions to the cosmic microwave background (CMB) bispectrum from non-Gaussianity induced by secondary anisotropies during reionization. Large-scale structure in the reionized epoch both gravitational lenses CMB photons and produces Doppler shifts in their temperature from scattering off electrons in infall. The resulting correlation is potentially observable through the CMB bispectrum. The second-order Ostriker-Vishniac also couples to a variety of linear secondary effects to produce a bispectrum. For the currently favored flat cosmological model with a low matter content and small optical depth in the reionized epoch \tau \la 0.3, however, these bispectrum contributions are well below the detection threshold of MAP and at or below that of Planck, given their cosmic and noise variance limitations. At the upper end of this range, they can serve as an extra source of noise for measurements with Planck of either primordial nongaussianity or that induced by the correlation of gravitational lensing with the integrated Sachs-Wolfe and the thermal Sunyaev-Zel'dovich effects. We include a discussion of the general properties of the CMB bispectrum, its configuration dependence for the various effects, and its computation in the Limber approximation and beyond.Comment: 17 pages, 10 figures (with emulateapj.sty); submitted to Ap

    Interplay between excitation kinetics and reaction-center dynamics in purple bacteria

    Full text link
    Photosynthesis is arguably the fundamental process of Life, since it enables energy from the Sun to enter the food-chain on Earth. It is a remarkable non-equilibrium process in which photons are converted to many-body excitations which traverse a complex biomolecular membrane, getting captured and fueling chemical reactions within a reaction-center in order to produce nutrients. The precise nature of these dynamical processes -- which lie at the interface between quantum and classical behaviour, and involve both noise and coordination -- are still being explored. Here we focus on a striking recent empirical finding concerning an illumination-driven transition in the biomolecular membrane architecture of {\it Rsp. Photometricum} purple bacteria. Using stochastic realisations to describe a hopping rate model for excitation transfer, we show numerically and analytically that this surprising shift in preferred architectures can be traced to the interplay between the excitation kinetics and the reaction center dynamics. The net effect is that the bacteria profit from efficient metabolism at low illumination intensities while using dissipation to avoid an oversupply of energy at high illumination intensities.Comment: 21 pages, 13 figures, accepted for publication in New Journal of Physic

    Probing the equation of state of the early universe with a space laser interferometer

    Full text link
    We propose a method to probe the equation of state of the early universe and its evolution, using the stochastic gravitational wave background from inflation. A small deviation from purely radiation dominated universe (w=1/3w= 1/3) would be clearly imprinted on the gravitational wave spectrum ΩGW(f)\Omega_{GW}(f) due to the nearly scale invariant nature of inflationary generated waves.Comment: 10 pages, 1 figur

    Cross-Correlating Cosmic Microwave Background Radiation Fluctuations with Redshift Surveys: Detecting the Signature of Gravitational Lensing

    Get PDF
    Density inhomogeneities along the line-of-sight distort fluctuations in the cosmic microwave background. Usually, this effect is thought of as a small second-order effect that mildly alters the statistics of the microwave background fluctuations. We show that there is a first-order effect that is potentially observable if we combine microwave background maps with large redshift surveys. We introduce a new quantity that measures this lensing effect, , where T is the microwave background temperature and δθ\delta \theta is the lensing due to matter in the region probed by the redshift survey. We show that the expected signal is first order in the gravitational lensing bending angle, <(δθ)2>1/2< (\delta \theta)^2 >^{1/2}, and find that it should be easily detectable, (S/N) \sim 15-35, if we combine the Microwave Anisotropy Probe satellite and Sloan Digital Sky Survey data. Measurements of this cross-correlation will directly probe the ``bias'' factor, the relationship between fluctuations in mass and fluctuations in galaxy counts.Comment: 13 pages, 4 postscript figures included; Uses aaspp4.sty (AASTeX v4.0); Accepted for publication in Astrophysical Journal, Part

    Signature of Gravity Waves in Polarization of the Microwave Background

    Get PDF
    Using spin-weighted decomposition of polarization in the Cosmic Microwave Background (CMB) we show that a particular combination of Stokes QQ and UU parameters vanishes for primordial fluctuations generated by scalar modes, but does not for those generated by primordial gravity waves. Because of this gravity wave detection is not limited by cosmic variance as in the case of temperature fluctuations. We present the exact expressions for various polarization power spectra, which are valid on any scale. Numerical evaluation in inflation-based models shows that the expected signal is of the order of 0.5 μK\mu K, which could be directly tested in future CMB experiments.Comment: 4 pages, 1 figure, RevTeX, matches the accepted version (to appear in Phys. Rev. Lett.); code available at http://arcturus.mit.edu:80/~matiasz/CMBFAST/cmbfast.htm
    corecore