7,824 research outputs found
Inhomogeneous reionization and the polarization of the cosmic microwave background
In a universe with inhomogeneous reionization, the ionized patches create a
second order signal in the cosmic microwave background polarization anisotropy.
This signal originates in the coupling of the free electron fluctuation to the
quadruple moment of the temperature anisotropy. We examine the contribution
from a simple inhomogeneous reionization model and find that the signal from
such a process is below the detectable limits of the Planck Surveyor mission.
However t he signal is above the fundamental uncertainty limit from cosmic
variance, so th at a future detection with a high accuracy experiment on
sub-arcminute scales is possible.Comment: 10 pages, 2 eps figures, final version accepted for publication in
ApJ Letter
21st century social work: reducing re-offending - key practice skills
This literature review was commissioned by the Scottish Executiveâs Social Work Services Inspectorate in order to support the work of the 21st Century Social Work Review Group. Discussions in relation to the future arrangements for criminal justice social work raised issues about which disciplines might best encompass the requisite skills for reducing re-offending in the community. Rather than starting with what is known or understood about the skills of those professionals currently involved in such interventions, this study sought to start with the research evidence on effective work with offenders to reduce re-offending and then work its way back to the skills required to promote this outcome
Porous squeeze-film flow
The squeeze-film flow of a thin layer of Newtonian fluid filling the gap between a flat impermeable surface moving under a prescribed constant load and a flat thin porous bed coating a stationary flat impermeable surface is considered. Unlike in the classical case of an impermeable bed, in which an infinite time is required for the two surfaces to touch, for a porous bed contact occurs in a finite contact time. Using a lubrication approximation an implicit expression for the fluid layer thickness and an explicit expression for the contact time are obtained and analysed. In addition, the fluid particle paths are calculated, and the penetration depths of fluid particles into the porous bed are determined. In particular, the behaviour in the asymptotic limit of small permeability, in which the contact time is large but finite, is investigated. Finally, the results are interpreted in the context of lubrication in the human knee joint, and some conclusions are drawn about the contact time of the cartilage-coated femoral condyles and tibial plateau and the penetration of nutrients into the cartilage
Squeeze-Film Flow in the Presence of a Thin Porous Bed, with Application to the Human Knee Joint
Motivated by the desire for a better understanding of the lubrication of the human knee joint, the squeeze-film flow of a thin layer of Newtonian fluid (representing the synovial fluid) filling the gap between a flat impermeable surface (representing the femoral condyles) and a flat thin porous bed (representing the articular cartilage) coating a stationary flat impermeable surface (representing the tibial plateau) is considered. As the impermeable surface approaches the porous bed under a prescribed constant load all of the fluid is squeezed out of the gap in a finite contact time. In the context of the knee, the size of this contact time suggests that when a person stands still for a short period of time their knees may be fluid lubricated, but that when they stand still for a longer period of time contact between the cartilage-coated surfaces may occur. The fluid particle paths are calculated, and the penetration depths of fluid particles into the porous bed are determined. In the context of the knee, these penetration depths provide a measure of how far into the cartilage nutrients are carried by the synovial fluid, and suggest that when a person stands still nutrients initially in the fluid layer penetrate only a relatively small distance into the cartilage. However, the model also suggests that the cumulative effect of repeated loading and unloading of the knees during physical activity such as walking or running may be sufficient to carry nutrients deep into the cartilage
Analytical study of electrophoretic characterization of kidney cells
Embryonic kidney cells were studied as a follow-up to the MA-011 Electrophoresis Technology Experiment which was conducted during the Apollo Soyuz Test Project (ASTP). The postflight analysis of the performance of the ASTP zone electrophoresis experiment involving embryonic kidney cells is reported. The feasibility of producing standard particles for electrophoresis was also studied. This work was undertaken in response to a need for standardization of methods for producing, calibrating, and storing electrophoretic particle standards which could be employed in performance tests of various types of electrophoresis equipment. Promising procedures were tested for their suitability in the production of standard test particles from red blood cells
Cosmic Microwave Background Anisotropy Window Functions Revisited
The primary results of most observations of cosmic microwave background (CMB)
anisotropy are estimates of the angular power spectrum averaged through some
broad band, called band-powers. These estimates are in turn what are used to
produce constraints on cosmological parameters due to all CMB observations.
Essential to this estimation of cosmological parameters is the calculation of
the expected band-power for a given experiment, given a theoretical power
spectrum. Here we derive the "band power" window function which should be used
for this calculation, and point out that it is not equivalent to the window
function used to calculate the variance. This important distinction has been
absent from much of the literature: the variance window function is often used
as the band-power window function. We discuss the validity of this assumed
equivalence, the role of window functions for experiments that constrain the
power in {\it multiple} bands, and summarize a prescription for reporting
experimental results. The analysis methods detailed here are applied in a
companion paper to three years of data from the Medium Scale Anisotropy
Measurement.Comment: 5 pages, 1 included .eps figure, PRD in press---final published
versio
CMB Likelihood Functions for Beginners and Experts
Although the broad outlines of the appropriate pipeline for cosmological
likelihood analysis with CMB data has been known for several years, only
recently have we had to contend with the full, large-scale, computationally
challenging problem involving both highly-correlated noise and extremely large
datasets (). In this talk we concentrate on the beginning and end of
this process. First, we discuss estimating the noise covariance from the data
itself in a rigorous and unbiased way; this is essentially an iterated
minimum-variance mapmaking approach. We also discuss the unbiased determination
of cosmological parameters from estimates of the power spectrum or experimental
bandpowers.Comment: Long-delayed submission. In AIP Conference Proceedings "3K Cosmology"
held in Rome, Oct 5-10, 1998, edited by Luciano Maiani, Francesco Melchiorri
and Nicola Vittorio, 343-347, New York, American Institute of Physics 199
Constraining Large Scale Structure Theories with the Cosmic Background Radiation
We review the relevant 10+ parameters associated with inflation and matter
content; the relation between LSS and primary and secondary CMB anisotropy
probes; COBE constraints on energy injection; current anisotropy band-powers
which strongly support the gravitational instability theory and suggest the
universe could not have reionized too early. We use Bayesian analysis methods
to determine what current CMB and CMB+LSS data imply for inflation-based
Gaussian fluctuations in tilted CDM, hCDM and oCDM model
sequences with age 11-15 Gyr, consisting of mixtures of baryons, cold (and
possibly hot) dark matter, vacuum energy, and curvature energy in open
cosmologies. For example, we find the slope of the initial spectrum is within
about 5% of the (preferred) scale invariant form when just the CMB data is
used, and for CDM when LSS data is combined with CMB; with both, a
nonzero value of is strongly preferred ( for a 13
Gyr sequence, similar to the value from SNIa). The CDM sequence prefers
, but is overall much less likely than the flat
sequence with CMB+LSS. We also review the rosy forecasts
of angular power spectra and parameter estimates from future balloon and
satellite experiments when foreground and systematic effects are ignored.Comment: 20 pages, LaTeX, 5 figures, 2 tables, uses rspublic.sty To appear in
Philosophical Transactions of the Royal Society of London A, 1998.
"Discussion Meeting on Large Scale Structure in the Universe," Royal Society,
London, March 1998. Text and colour figures also available at
ftp://ftp.cita.utoronto.ca/bond/roysoc9
- âŠ