340 research outputs found

    Nanoscale spatially resolved infrared spectra from single microdroplets

    Full text link
    Droplet microfluidics has emerged as a powerful platform allowing a large number of individual reactions to be carried out in spatially distinct microcompartments. Due to their small size, however, the spectroscopic characterisation of species encapsulated in such systems remains challenging. In this paper, we demonstrate the acquisition of infrared spectra from single microdroplets containing aggregation-prone proteins. To this effect, droplets are generated in a microfluidic flow-focussing device and subsequently deposited in a square array onto a ZnSe prism using a micro stamp. After drying, the solutes present in the droplets are illuminated locally by an infrared laser through the prism, and their thermal expansion upon absorption of infrared radiation is measured with an atomic force microscopy tip, granting nanoscale resolution. Using this approach, we resolve structural differences in the amide bands of the spectra of monomeric and aggregated lysozyme from single microdroplets with picolitre volume.Comment: 5 pages, 3 Figure

    DNA-coated Functional Oil Droplets

    Full text link
    Many industrial soft materials often include oil-in-water (O/W) emulsions at the core of their formulations. By using tuneable interface stabilizing agents, such emulsions can self-assemble into complex structures. DNA has been used for decades as a thermoresponsive highly specific binding agent between hard and, recently, soft colloids. Up until now, emulsion droplets functionalized with DNA had relatively low coating densities and were expensive to scale up. Here a general O/W DNA-coating method using functional non-ionic amphiphilic block copolymers, both diblock and triblock, is presented. The hydrophilic polyethylene glycol ends of the surfactants are functionalized with azides, allowing for efficient, dense and controlled coupling of dibenzocyclooctane functionalized DNA to the polymers through a strain-promoted alkyne-azide click reaction. The protocol is readily scalable due to the triblock's commercial availability. Different production methods (ultrasonication, microfluidics and membrane emulsification) are used with different oils (hexadecane and silicone oil) to produce functional droplets in various size ranges (sub-micron, ∼20 μm\sim 20\,\mathrm{\mu m} and >50 μm> 50\,\mathrm{\mu m}), showcasing the generality of the protocol. Thermoreversible sub-micron emulsion gels, hierarchical "raspberry" droplets and controlled droplet release from a flat DNA-coated surface are demonstrated. The emulsion stability and polydispersity is evaluated using dynamic light scattering and optical microscopy. The generality and simplicity of the method opens up new applications in soft matter and biotechnological research and industrial advances.Comment: 7 pages, 2 figures, 1 tabl

    Consistent treatment of hydrophobicity in protein lattice models accounts for cold denaturation

    Full text link
    The hydrophobic effect stabilizes the native structure of proteins by minimizing the unfavourable interactions between hydrophobic residues and water through the formation of a hydrophobic core. Here we include the entropic and enthalpic contributions of the hydrophobic effect explicitly in an implicit solvent model. This allows us to capture two important effects: a length-scale dependence and a temperature dependence for the solvation of a hydrophobic particle. This consistent treatment of the hydrophobic effect explains cold denaturation and heat capacity measurements of solvated proteins.Comment: Added and corrected references for design procedure in main text (p. 2) and in Supplemental Information (p. 8

    A High Power-Density, Mediator-Free, Microfluidic Biophotovoltaic Device for Cyanobacterial Cells.

    Get PDF
    Biophotovoltaics has emerged as a promising technology for generating renewable energy because it relies on living organisms as inexpensive, self-repairing, and readily available catalysts to produce electricity from an abundant resource: sunlight. The efficiency of biophotovoltaic cells, however, has remained significantly lower than that achievable through synthetic materials. Here, a platform is devised to harness the large power densities afforded by miniaturized geometries. To this effect, a soft-lithography approach is developed for the fabrication of microfluidic biophotovoltaic devices that do not require membranes or mediators. Synechocystis sp. PCC 6803 cells are injected and allowed to settle on the anode, permitting the physical proximity between cells and electrode required for mediator-free operation. Power densities of above 100 mW m-2 are demonstrated for a chlorophyll concentration of 100 μM under white light, which is a high value for biophotovoltaic devices without extrinsic supply of additional energy.RCUK, OtherThis is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/aenm.20140129
    • …
    corecore