49 research outputs found
Behavioural determinants of gene flow in malaria vector populations: Anopheles gambiae males select large females as mates
BACKGROUND: Plasmodium-refractory mosquitoes are being rapidly developed for malaria control but will only succeed if they can successfully compete for mates when released into the wild. Pre-copulatory behavioural traits maintain genetic population structure in wild mosquito populations and mating barriers have foiled previous attempts to control malaria vectors through sterile male release. METHODS: Varying numbers of virgin male and female Anopheles gambiae Giles, from two strains of different innate sizes, were allowed to mate under standardized conditions in laboratory cages, following which, the insemination status, oviposition success and egg batch size of each female was assessed. The influence of male and female numbers, strain combination and female size were determined using logistic regression, correlation analysis and a simple mechanistic model of male competition for females. RESULTS: Male An. gambiae select females on the basis of size because of much greater fecundity among large females. Even under conditions where large numbers of males must compete for a smaller number of females, the largest females are more likely to become inseminated, to successfully oviposit and to produce large egg batches. CONCLUSIONS: Sexual selection, on the basis of size, could either promote or limit the spread of malaria-refractory genes into wild populations and needs to be considered in the continued development and eventual release of transgenic vectors. Fundamental studies of behavioural ecology in malaria vectors such as An. gambiae can have important implications for malaria control and should be prioritised for more extensive investigation in the future
Establishment of a self-propagating population of the African malaria vector Anopheles arabiensis under semi-field conditions
Background: The successful control of insect disease vectors relies on a thorough understanding of their ecology and behaviour. However, knowledge of the ecology of many human disease vectors lags behind that of agricultural pests. This is partially due to the paucity of experimental tools for investigating their ecology under natural conditions without risk of exposure to disease. Assessment of vector life-history and demographic traits under natural conditions has also been hindered by the inherent difficulty of sampling these seasonally and temporally varying populations with the limited range of currently available tools. Consequently much of our knowledge of vector biology comes from studies of laboratory colonies, which may not accurately represent the genetic and behavioural diversity of natural populations. Contained semi-field systems (SFS) have been proposed as more appropriate tools for the study of vector ecology. SFS are relatively large, netting-enclosed, mesocosms in which vectors can fly freely, feed on natural plant and vertebrate host sources, and access realistic resting and oviposition sites.
Methods: A self-replicating population of the malaria vector Anopheles arabiensis was established within a large field cage (21 x 9.1 x 7.1 m) at the Ifakara Health Institute, Tanzania that mimics the natural habitat features of the rural village environments where these vectors naturally occur. Offspring from wild females were used to establish this population whose life-history, behaviour and demography under semi-field conditions was monitored over 24 generations.
Results: This study reports the first successful establishment and maintenance of an African malaria vector population under SFS conditions for multiple generations (> 24). The host-seeking behaviour, time from blood feeding to oviposition, larval development, adult resting and swarming behaviour exhibited by An. arabiensis under SFS conditions were similar to those seen in nature.
Conclusions: This study presents proof-of-principle that populations of important African malaria vectors can be established within environmentally realistic, contained semi-field settings. Such SFS will be valuable tools for the experimental study of vector ecology and assessment of their short-term ecological and longer-term evolutionary responses to existing and new vector control interventions
Health research ethics in malaria vector trials in Africa
Malaria mosquito research in Africa as elsewhere is just over a century old. Early trials for development of mosquito control tools were driven by colonial enterprises and war efforts; they were, therefore, tested in military or colonial settings. The failure of those tools and environmental concerns, coupled with the desperate need for integrated malaria control strategies, has necessitated the development of new malaria mosquito control tools, which are to be tested on humans, their environment and mosquito habitats. Ethical concerns start with phase 2 trials, which pose limited ethical dilemmas. Phase 3 trials, which are undertaken on vulnerable civilian populations, pose ethical dilemmas ranging from individual to community concerns. It is argued that such trials must abide by established ethical principles especially safety, which is mainly enshrined in the principle of non-maleficence. As there is total lack of experience with many of the promising candidate tools (eg genetically modified mosquitoes, entomopathogenic fungi, and biocontrol agents), great caution must be exercised before they are introduced in the field. Since malaria vector trials, especially phase 3 are intrusive and in large populations, individual and community respect is mandatory, and must give great priority to community engagement. It is concluded that new tools must be safe, beneficial, efficacious, effective, and acceptable to large populations in the short and long-term, and that research benefits should be equitably distributed to all who bear the brunt of the research burdens. It is further concluded that individual and institutional capacity strengthening should be provided, in order to undertake essential research, carry out scientific and ethical review, and establish competent regulatory frameworks
Sampling of An.gambiae s.s mosquitoes using Limburger cheese, heat and moisture as baits in a homemade trap
<p>Abstract</p> <p>Background</p> <p>Ample evidence has shown that odour baited traps are likely to provide an objective monitoring tool for the host-seeking fraction of mosquito vectors of diseases like malaria and bancroftian filariasis. Such traps could eventually become part of primary healthcare systems used to study the vector biology and epidemiology of mosquito-borne diseases. I hereby, report a study that sampled <it>Anopheles gambiae sensu stricto </it>mosquitoes in a screen house using a homemade trap baited with a combination of Limburger cheese and moisture, Limburger cheese and heat, or Limburger cheese, moisture and heat.</p> <p>Findings</p> <p>Tests on the efficacy of the developed trap to sample <it>An. gambiae s.s</it>, mosquitoes using Limburger cheese, moisture and heat as baits were carried out in a screen house measuring 11.4 × 7.1 × 2.8 m. The studies were done in three phases. In the first phase the efficacy of the trap to sample <it>An. gambiae s.s</it>. using odour and moisture was tested. The second phase was to test the efficacy of the trap to sample <it>An. gambiae s.s</it>. using Limburger cheese and heat. In the third phase a combination of Limburger cheese, moisture and heat was tested. Tests were carried out for 27 consecutive nights.</p> <p>The designed trap collected a total of 59 <it>An. gambiae s.s</it>. in three trials. The trap baited with Limburger cheese and moisture collected 7 <it>An. gambiae s.s </it>in 7 days. The mean catch per day was 1. The trap baited with Limburger cheese and heat collected zero <it>An. gambiae s.s </it>in 11 days. The mean catch per day was therefore 0. The trap baited with Limburger cheese, moisture and heat collected 52 mosquitoes in 27 days and the mean catch was 1.93.</p> <p>Conclusions</p> <p>This study indicates that a non-electric fan driven trap baited with a combination of Limburger cheese, heat and moisture has a potential as an effective sampling tool for the malaria vector, <it>Anopheles gambiae s.s</it>. However, further optimization studies would be necessary.</p
Perspectives of people in Mali toward genetically-modified mosquitoes for malaria control
Background:
Genetically-modified (GM) mosquitoes have been proposed as part of an integrated vector control strategy for malaria control. Public acceptance is essential prior to field trials, particularly since mosquitoes are a vector of human disease and genetically modified organisms (GMOs) face strong scepticism in developed and developing nations. Despite this, in sub-Saharan Africa, where the GM mosquito effort is primarily directed, very little data is available on perspectives to GMOs. Here, results are presented of a qualitative survey of public attitudes to GM mosquitoes for malaria control in rural and urban areas of Mali, West Africa between the months of October 2008 and June 2009.
Methods:
The sample consisted of 80 individuals - 30 living in rural communities, 30 living in urban suburbs of Bamako, and 20 Western-trained and traditional health professionals working in Bamako and Bandiagara. Questions were asked about the cause of malaria, heredity and selective breeding. This led to questions about genetic alterations, and acceptable conditions for a release of pest-resistant GM corn and malaria-refractory GM mosquitoes. Finally, participants were asked about the decision-making process in their community. Interviews were transcribed and responses were categorized according to general themes.
Results:
Most participants cited mosquitoes as one of several causes of malaria. The concept of the gene was not widely understood; however selective breeding was understood, allowing limited communication of the concept of genetic modification. Participants were open to a release of pest-resistant GM corn, often wanting to conduct a trial themselves. The concept of a trial was reapplied to GM mosquitoes, although less frequently. Participants wanted to see evidence that GM mosquitoes can reduce malaria prevalence without negative consequences for human health and the environment. For several participants, a mosquito control programme was preferred; however a transgenic release that satisfied certain requirements was usually acceptable.
Conclusions:
Although there were some dissenters, the majority of participants were pragmatic towards a release of GM mosquitoes. An array of social and cultural issues associated with malaria, mosquitoes and genetic engineering became apparent. If these can be successfully addressed, then social acceptance among the populations surveyed seems promising
Improvement of a synthetic lure for Anopheles gambiae using compounds produced by human skin microbiota
Background - Anopheles gambiae sensu stricto is considered to be highly anthropophilic and volatiles of human origin provide essential cues during its host-seeking behaviour. A synthetic blend of three human-derived volatiles, ammonia, lactic acid and tetradecanoic acid, attracts A. gambiae. In addition, volatiles produced by human skin bacteria are attractive to this mosquito species. The purpose of the current study was to test the effect of ten compounds present in the headspace of human bacteria on the host-seeking process of A. gambiae. The effect of each of the ten compounds on the attractiveness of a basic blend of ammonia, lactic and tetradecanoic acid to A. gambiae was examined. Methods- The host-seeking response of A. gambiae was evaluated in a laboratory set-up using a dual-port olfactometer and in a semi-field facility in Kenya using MM-X traps. Odorants were released from LDPE sachets and placed inside the olfactometer as well as in the MM-X traps. Carbon dioxide was added in the semi-field experiments, provided from pressurized cylinders or fermenting yeast. Results - The olfactometer and semi-field set-up allowed for high-throughput testing of the compounds in blends and in multiple concentrations. Compounds with an attractive or inhibitory effect were identified in both bioassays. 3-Methyl-1-butanol was the best attractant in both set-ups and increased the attractiveness of the basic blend up to three times. 2-Phenylethanol reduced the attractiveness of the basic blend in both bioassays by more than 50%. Conclusions - Identification of volatiles released by human skin bacteria led to the discovery of compounds that have an impact on the host-seeking behaviour of A. gambiae. 3-Methyl-1-butanol may be used to increase mosquito trap catches, whereas 2-phenylethanol has potential as a spatial repellent. These two compounds could be applied in push-pull strategies to reduce mosquito numbers in malaria endemic areas
Towards a sterile insect technique field release of Anopheles arabiensis mosquitoes in Sudan: Irradiation, transportation, and field cage experimentation
<p>Abstract</p> <p>Background</p> <p>The work described in this article forms part of a study to suppress a population of the malaria vector <it>Anopheles arabiensis </it>in Northern State, Sudan, with the Sterile Insect Technique. No data have previously been collected on the irradiation and transportation of anopheline mosquitoes in Africa, and the first series of attempts to do this in Sudan are reported here. In addition, experiments in a large field cage under near-natural conditions are described.</p> <p>Methods</p> <p>Mosquitoes were irradiated in Khartoum and transported as adults by air to the field site earmarked for future releases (400 km from the laboratory). The field cage was prepared for experiments by creating resting sites with favourable conditions. The mating and survival of (irradiated) laboratory males and field-collected males was studied in the field cage, and two small-scale competition experiments were performed.</p> <p>Results</p> <p>Minor problems were experienced with the irradiation of insects, mostly associated with the absence of a rearing facility in close proximity to the irradiation source. The small-scale transportation of adult mosquitoes to the release site resulted in minimal mortality (< 6%). Experiments in the field cage showed that mating occurred in high frequencies (i.e. an average of 60% insemination of females after one or two nights of mating), and laboratory reared males (i.e. sixty generations) were able to inseminate wild females at rates comparable to wild males. Based on wing length data, there was no size preference of males for mates. Survival of mosquitoes from the cage, based on recapture after mating, was satisfactory and approximately 60% of the insects were recaptured after one night. Only limited information on male competitiveness was obtained due to problems associated with individual egg laying of small numbers of wild females.</p> <p>Conclusion</p> <p>It is concluded that although conditions are challenging, there are no major obstacles associated with the small-scale irradiation and transportation of insects in the current setting. The field cage is suitable for experiments and studies to test the competitiveness of irradiated males can be pursued. The scaling up of procedures to accommodate much larger numbers of insects needed for a release is the next challenge and recommendations to further implementation of this genetic control strategy are presented.</p
A novel method for standardized application of fungal spore coatings for mosquito exposure bioassays
<p>Abstract</p> <p>Background</p> <p>Interest in the use of fungal entomopathogens against malaria vectors is growing. Fungal spores infect insects via the cuticle and can be applied directly on the insect to evaluate infectivity. For flying insects such as mosquitoes, however, application of fungal suspensions on resting surfaces is more realistic and representative of field settings. For this type of exposure, it is essential to apply specific amounts of fungal spores homogeneously over a surface for testing the effects of fungal dose and exposure time. Contemporary methods such as spraying or brushing spore suspensions onto substrates do not produce the uniformity and consistency that standardized laboratory assays require. Two novel fungus application methods using equipment developed in the paint industry are presented and compared.</p> <p>Methods</p> <p>Wired, stainless steel K-bars were tested and optimized for coating fungal spore suspensions onto paper substrates. Different solvents and substrates were evaluated. Two types of coating techniques were compared, i.e. manual and automated coating. A standardized bioassay set-up was designed for testing coated spores against malaria mosquitoes.</p> <p>Results</p> <p>K-bar coating provided consistent applications of spore layers onto paper substrates. Viscous Ondina oil formulations were not suitable and significantly reduced spore infectivity. Evaporative Shellsol T solvent dried quickly and resulted in high spore infectivity to mosquitoes. Smooth proofing papers were the most effective substrate and showed higher infectivity than cardboard substrates. Manually and mechanically applied spore coatings showed similar and reproducible effects on mosquito survival. The standardized mosquito exposure bioassay was effective and consistent in measuring effects of fungal dose and exposure time.</p> <p>Conclusions</p> <p>K-bar coating is a simple and consistent method for applying fungal spore suspensions onto paper substrates and can produce coating layers with accurate effective spore concentrations. The mosquito bioassay was suitable for evaluating fungal infectivity and virulence, allowing optimizations of spore dose and exposure time. Use of this standardized application method will help achieve reliable results that are exchangeable between different laboratories.</p