2,463 research outputs found
Interpersonal Behavior in Couple Therapy: Concurrent and Prospective Associations with Depressive Symptoms and Relationship Distress
Objective: This study investigated associations between couples’ interpersonal behavior, depressive symptoms, and relationship distress over the course of couple psychotherapy. Method: After every other session of Integrative Systemic Therapy (M = 13 sessions), N = 100 individuals within 50 couples rated their in-session affiliation and autonomy behavior using the circumplex-based Structural Analysis of Social Behavior Intrex. Concurrent and prospective associations of interpersonal behavior with depressive symptoms and relationship distress were evaluated via multivariate multilevel modeling using the Actor-Partner Interdependence Model. Results: An individual’s hostility, as well as the partner’s hostility, positively predicted an individual’s concurrent depressive symptoms and relationship distress, as well as his or her relationship distress at the following session. Partner hostility during one session predicted an individual’s subsequent depressive symptoms. During sessions in which individuals controlled the partner, and separated themselves from the partner, they reported more concurrent depressive symptoms and relationship distress, and more subsequent relationship distress. When partners separated themselves, individuals reported more concurrent depressive symptoms and relationship distress, and more subsequent relationship distress. Conclusions: Results underscore the importance of couples’ in-session affiliation and autonomy behavior in the treatment of depressive symptoms and relationship distress within couple therapy
Solidification in soft-core fluids: disordered solids from fast solidification fronts
Using dynamical density functional theory we calculate the speed of
solidification fronts advancing into a quenched two-dimensional model fluid of
soft-core particles. We find that solidification fronts can advance via two
different mechanisms, depending on the depth of the quench. For shallow
quenches, the front propagation is via a nonlinear mechanism. For deep
quenches, front propagation is governed by a linear mechanism and in this
regime we are able to determine the front speed via a marginal stability
analysis. We find that the density modulations generated behind the advancing
front have a characteristic scale that differs from the wavelength of the
density modulation in thermodynamic equilibrium, i.e., the spacing between the
crystal planes in an equilibrium crystal. This leads to the subsequent
development of disorder in the solids that are formed. For the one-component
fluid, the particles are able to rearrange to form a well-ordered crystal, with
few defects. However, solidification fronts in a binary mixture exhibiting
crystalline phases with square and hexagonal ordering generate solids that are
unable to rearrange after the passage of the solidification front and a
significant amount of disorder remains in the system.Comment: 18 pages, 14 fig
Homoclinic snaking in bounded domains
Homoclinic snaking is a term used to describe the back and forth oscillation of a branch of time-independent spatially localized states in a bistable, spatially reversible system as the localized structure grows in length by repeatedly adding rolls on either side. On the real line this process continues forever. In finite domains snaking terminates once the domain is filled but the details of how this occurs depend critically on the choice of boundary conditions. With periodic boundary conditions the snaking branches terminate on a branch of spatially periodic states. However, with non-Neumann boundary conditions they turn continuously into a large amplitude filling state that replaces the periodic state. This behavior, shown here in detail for the Swift-Hohenberg equation, explains the phenomenon of “snaking without bistability”, recently observed in simulations of binary fluid convection by Mercader, Batiste, Alonso and Knobloch (preprint)
High Q Operation of SRF Cavities The Impact of Thermocurrents on the RF Surface Resistance
We present a study concerning the operation of a superconducting RF cavity non doped niobium in horizontal testing with the focus on understanding the thermoelectrically induced contribution to the surface resistance. Starting in 2009, we suggested a means of reducing the residual resistance by warming up a cavity after initial cooldown to about 20 K and cooling it down again [1]. In subsequent studies we used this technique to manipulate the residual resistance by more than a factor of 2 [2]. We postulated that thermocurrents during cooldown generate additional trapped magnetic flux that impacts the cavity quality factor. Since several questions remained open, we present here a more extensive study including measurement of two additional passband modes of the 9 cell cavity that confirms the effect. We also discuss simulations that substantiate the claim. While the layout of the cavity LHe tank system is cylindrically symmetric, we show that the temperature dependence of the material parameters result in a non symmetric current distribution. Hence a significant amount of magnetic flux can be generated at the RF surface resulting in an increased surface resistance [3]
Solidification fronts in supercooled liquids: how rapid fronts can lead to disordered glassy solids
We determine the speed of a crystallisation (or more generally, a
solidification) front as it advances into the uniform liquid phase after the
system has been quenched into the crystalline region of the phase diagram. We
calculate the front speed by assuming a dynamical density functional theory
model for the system and applying a marginal stability criterion. Our results
also apply to phase field crystal (PFC) models of solidification. As the
solidification front advances into the unstable liquid phase, the density
profile behind the advancing front develops density modulations and the
wavelength of these modulations is a dynamically chosen quantity. For shallow
quenches, the selected wavelength is precisely that of the crystalline phase
and so well-ordered crystalline states are formed. However, when the system is
deeply quenched, we find that this wavelength can be quite different from that
of the crystal, so that the solidification front naturally generates disorder
in the system. Significant rearrangement and ageing must subsequently occur for
the system to form the regular well-ordered crystal that corresponds to the
free energy minimum. Additional disorder is introduced whenever a front
develops from random initial conditions. We illustrate these findings with
results obtained from the PFC.Comment: 14 pages, 7 figure
Vortices in Thin, Compressible, Unmagnetized Disks
We consider the formation and evolution of vortices in a hydrodynamic
shearing-sheet model. The evolution is done numerically using a version of the
ZEUS code. Consistent with earlier results, an injected vorticity field evolves
into a set of long-lived vortices, each of which has a radial extent comparable
to the local scale height. But we also find that the resulting velocity field
has a positive shear stress, . This effect appears
only at high resolution. The transport, which decays with time as t^-1/2,
arises primarily because the vortices drive compressive motions. This result
suggests a possible mechanism for angular momentum transport in low-ionization
disks, with two important caveats: a mechanism must be found to inject
vorticity into the disk, and the vortices must not decay rapidly due to
three-dimensional instabilities.Comment: 8 pages, 10 figures (high resolution figures available in ApJ
electronic edition
Localized transverse bursts in inclined layer convection
We investigate a novel bursting state in inclined layer thermal convection in
which convection rolls exhibit intermittent, localized, transverse bursts. With
increasing temperature difference, the bursts increase in duration and number
while exhibiting a characteristic wavenumber, magnitude, and size. We propose a
mechanism which describes the duration of the observed bursting intervals and
compare our results to bursting processes in other systems.Comment: 4 pages, 8 figure
Generation of finite wave trains in excitable media
Spatiotemporal control of excitable media is of paramount importance in the
development of new applications, ranging from biology to physics. To this end
we identify and describe a qualitative property of excitable media that enables
us to generate a sequence of traveling pulses of any desired length, using a
one-time initial stimulus. The wave trains are produced by a transient
pacemaker generated by a one-time suitably tailored spatially localized finite
amplitude stimulus, and belong to a family of fast pulse trains. A second
family, of slow pulse trains, is also present. The latter are created through a
clumping instability of a traveling wave state (in an excitable regime) and are
inaccessible to single localized stimuli of the type we use. The results
indicate that the presence of a large multiplicity of stable, accessible,
multi-pulse states is a general property of simple models of excitable media.Comment: 6 pages, 6 figure
- …