2,045 research outputs found

    Asymmetry of temporal cross-correlations in turbulent shear flows

    Full text link
    We investigate spatial and temporal cross-correlations between streamwise and normal velocity components in three shear flows: a low-dimensional model for vortex-streak interactions, direct numerical simulations for a nearly homogeneous shear flow and experimental data for a turbulent boundary layer. A driving of streamwise streaks by streamwise vortices gives rise to a temporal asymmetry in the short time correlation. Close to the wall or the bounding surface in the free-slip situations, this asymmetry is identified. Further away from the boundaries the asymmetry becomes weaker and changes character, indicating the prevalence of other processes. The systematic variation of the asymmetry measure may be used as a complementary indicator to separate different layers in turbulent shear flows. The location of the extrema at different streamwise displacements can be used to read off the mean advection speed; it differs from the mean streamwise velocity because of asymmetries in the normal extension of the structures.Comment: 10 pages, 7 Postscript figures (low quality due to downsizing

    ggstThe role of tendon microcirculation in Achilles and patellar tendinopathy

    Get PDF
    Tendinopathy is of distinct interest as it describes a painful tendon disease with local tenderness, swelling and pain associated with sonographic features such as hypoechogenic texture and diameter enlargement. Recent research elucidated microcirculatory changes in tendinopathy using laser Doppler flowmetry and spectrophotometry such as at the Achilles tendon, the patellar tendon as well as at the elbow and the wrist level. Tendon capillary blood flow is increased at the point of pain. Tendon oxygen saturation as well as tendon postcapillary venous filling pressures, determined non-invasively using combined Laser Doppler flowmetry and spectrophotometry, can quantify, in real-time, how tendon microcirculation changes over with pathology or in response to a given therapy. Tendon oxygen saturation can be increased by repetitive, intermittent short-term ice applications in Achilles tendons; this corresponds to 'ischemic preconditioning', a method used to train tissue to sustain ischemic damage. On the other hand, decreasing tendon oxygenation may reflect local acidosis and deteriorating tendon metabolism. Painful eccentric training, a common therapy for Achilles, patellar, supraspinatus and wrist tendinopathy decreases abnormal capillary tendon flow without compromising local tendon oxygenation. Combining an Achilles pneumatic wrap with eccentric training changes tendon microcirculation in a different way than does eccentric training alone; both approaches reduce pain in Achilles tendinopathy. The microcirculatory effects of measures such as extracorporeal shock wave therapy as well as topical nitroglycerine application are to be studied in tendinopathy as well as the critical question of dosage and maintenance. Interestingly it seems that injection therapy using color Doppler for targeting the area of neovascularisation yields to good clinical results with polidocanol sclerosing therapy, but also with a combination of epinephrine and lidocaine

    Kaspar Schott’s “encyclopedia of all mathematical sciences”

    Get PDF
    In 1661, Kaspar Schott published his comprehensive textbook “Cursus mathematicus” in Würzburg for the first time, his “Encyclopedia of all mathematical sciences”. It was so successful that it was published again in 1674 and 1677. In its 28 books, Schott gave an introduction for beginners in 22 mathematical disciplines by means of 533 figures and numerous tables. He wanted to avoid the shortness and the unintelligibility of his predecessors Alsted and Hérigone. He cited or recommended far more than hundred authors, among them Protestants like Michael Stifel and Johannes Kepler, but also Catholics like Nicolaus Copernicus. The paper gives a survey of this work and explains especially interesting aspects: The dedication to the German emperor Leopold I., Athanasius Kircher’s letter of recommendation as well as Schott’s classification of sciences, explanations regarding geometry, astronomy, and algebra

    Localized transverse bursts in inclined layer convection

    Full text link
    We investigate a novel bursting state in inclined layer thermal convection in which convection rolls exhibit intermittent, localized, transverse bursts. With increasing temperature difference, the bursts increase in duration and number while exhibiting a characteristic wavenumber, magnitude, and size. We propose a mechanism which describes the duration of the observed bursting intervals and compare our results to bursting processes in other systems.Comment: 4 pages, 8 figure

    Rayleigh and depinning instabilities of forced liquid ridges on heterogeneous substrates

    Full text link
    Depinning of two-dimensional liquid ridges and three-dimensional drops on an inclined substrate is studied within the lubrication approximation. The structures are pinned to wetting heterogeneities arising from variations of the strength of the short-range polar contribution to the disjoining pressure. The case of a periodic array of hydrophobic stripes transverse to the slope is studied in detail using a combination of direct numerical simulation and branch-following techniques. Under appropriate conditions the ridges may either depin and slide downslope as the slope is increased, or first breakup into drops via a transverse instability, prior to depinning. The different transition scenarios are examined together with the stability properties of the different possible states of the system.Comment: Physics synopsis link: http://physics.aps.org/synopsis-for/10.1103/PhysRevE.83.01630

    Adiabatic reduction near a bifurcation in stochastically modulated systems

    Full text link
    We re-examine the procedure of adiabatic elimination of fast relaxing variables near a bifurcation point when some of the parameters of the system are stochastically modulated. Approximate stationary solutions of the Fokker-Planck equation are obtained near threshold for the pitchfork and transcritical bifurcations. Stochastic resonance between fast variables and random modulation may shift the effective bifurcation point by an amount proportional to the intensity of the fluctuations. We also find that fluctuations of the fast variables above threshold are not always Gaussian and centered around the (deterministic) center manifold as was previously believed. Numerical solutions obtained for a few illustrative examples support these conclusions.Comment: RevTeX, 19 pages and 16 figure

    On the validity of mean-field amplitude equations for counterpropagating wavetrains

    Full text link
    We rigorously establish the validity of the equations describing the evolution of one-dimensional long wavelength modulations of counterpropagating wavetrains for a hyperbolic model equation, namely the sine-Gordon equation. We consider both periodic amplitude functions and localized wavepackets. For the localized case, the wavetrains are completely decoupled at leading order, while in the periodic case the amplitude equations take the form of mean-field (nonlocal) Schr\"odinger equations rather than locally coupled partial differential equations. The origin of this weakened coupling is traced to a hidden translation symmetry in the linear problem, which is related to the existence of a characteristic frame traveling at the group velocity of each wavetrain. It is proved that solutions to the amplitude equations dominate the dynamics of the governing equations on asymptotically long time scales. While the details of the discussion are restricted to the class of model equations having a leading cubic nonlinearity, the results strongly indicate that mean-field evolution equations are generic for bimodal disturbances in dispersive systems with \O(1) group velocity.Comment: 16 pages, uuencoded, tar-compressed Postscript fil

    Cellulite and extracorporeal Shockwave therapy (CelluShock-2009) - a Randomized Trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cellulite is a widespread problem involving females' buttocks and thighs based on the female specific anatomy. Given the higher number of fat cells stored in female fatty tissue in contrast to males, and the aging process of connective tissue leads to an imbalance between lipogenesis and lipolysis with subsequent large fat cells bulging the skin. In addition, microcirculatory changes have been suggested, however remain largely unknown in a controlled clinical setting. We hypothesize that the combination of extracorporeal shockwave and a daily gluteal muscle strength program is superior to the gluteal muscle strength program alone in cellulite.</p> <p>Methods/Design</p> <p>Study design: Randomized-controlled trial. IRB approval was granted at Hannover Medical School, Germany on May 22, 2009. For allocation of participants, a 1:1 ratio randomization was performed using opaque envelopes for the concealment of allocation. Reporting: according to CONSORT 2010. Eligible patients were females aged 18 or over and 65 or younger with cellulite with documented cellulite 1°-4° according to the Nßrnberger score. Exclusion criteria were suspected or evident pregnancy, no cellulite, no informed consent or age under 18 years or above 65 years. Patients were recruited by advertisements in local regional newspapers and via the Internet. Analysis: Intention-to-treat. Outcome parameters: a) Photonumeric severity scale, b) Nßrnberger Score, c) circumference measurements, d) capillary blood flow, e) tissue oxygen saturation, f) postcapillary venous blood flow. Intervention group: Six sessions of extracorporeal focused shock wave for six sessions (2000 impulses, 0,25 mJ/m2 every 1-2 weeks) at both gluteal and thigh regions plus a specific gluteal strength exercise training. Control group: Six sessions of sham extracorporeal focused shock wave for six sessions (2000 impulses, 0,01 mJ/m2 every 1-2 weeks) at both gluteal and thigh regions plus a specific gluteal strength exercise training. Follow-up: 12 weeks. Blinding was achieved for all participants enrolled in the trial, the photograph taking the digital images for the primary outcome measure, the two assessors of the outcome measures, all additional health care providers and for the analyst from the biometrical department. Only one researcher (BJ) was aware of the group assignment performing the randomisation and the extracorporeal shock wave therapy.</p> <p>Discussion</p> <p>This randomised-controlled trial will provide much needed evidence on the clinical effectiveness of focused extracorporal shock wave therapy as an adjunct to gluteal strength training in females suffering cellulite.</p> <p>ClinicalTrials.gov identifier</p> <p>NCT00947414</p

    Final design for the bERLinPro main LINAC cavity

    Get PDF
    The Berlin Energy Recovery Linac Project bERLinPro is designed to develop and demonstrateCWLINAC technology for 100 mA class ERLs. High current operation requires an effective damping of higher order modes HOMs of the 1.3 GHz main linac cavities. We have studied elliptical 7 cell cavities based on a modified Cornell ERL design combined with JLab s waveguide HOM damping approach. This paper will summarize the final optimization of the end cell tuning for minimum external Q of the HOMs, coupler kick calculations of the single TTF fundamental power coupler FPC as well as multipole expansion analysis of the given modes and a discussion on operational aspects

    Stretching of polymers around the Kolmogorov scale in a turbulent shear flow

    Full text link
    We present numerical studies of stretching of Hookean dumbbells in a turbulent Navier-Stokes flow with a linear mean profile, =Sy. In addition to the turbulence features beyond the viscous Kolmogorov scale \eta, the dynamics at the equilibrium extension of the dumbbells significantly below eta is well resolved. The variation of the constant shear rate S causes a change of the turbulent velocity fluctuations on all scales and thus of the intensity of local stretching rate of the advecting flow. The latter is measured by the maximum Lyapunov exponent lambda_1 which is found to increase as \lambda_1 ~ S^{3/2}, in agreement with a dimensional argument. The ensemble of up to 2 times 10^6 passively advected dumbbells is advanced by Brownian dynamics simulations in combination with a pseudospectral integration for the turbulent shear flow. Anisotropy of stretching is quantified by the statistics of the azimuthal angle ϕ\phi which measures the alignment with the mean flow axis in the x-y shear plane, and the polar angle theta which determines the orientation with respect to the shear plane. The asymmetry of the probability density function (PDF) of phi increases with growing shear rate S. Furthermore, the PDF becomes increasingly peaked around mean flow direction (phi= 0). In contrast, the PDF of the polar angle theta is symmetric and less sensitive to changes of S.Comment: 16 pages, 14 Postscript figures (2 with reduced quality
    • …
    corecore