10 research outputs found

    Allergic sensitization: screening methods

    Get PDF
    Experimental in silico, in vitro, and rodent models for screening and predicting protein sensitizing potential are discussed, including whether there is evidence of new sensitizations and allergies since the introduction of genetically modified crops in 1996, the importance of linear versus conformational epitopes, and protein families that become allergens. Some common challenges for predicting protein sensitization are addressed: (a) exposure routes; (b) frequency and dose of exposure; (c) dose-response relationships; (d) role of digestion, food processing, and the food matrix; (e) role of infection; (f) role of the gut microbiota; (g) influence of the structure and physicochemical properties of the protein; and (h) the genetic background and physiology of consumers. The consensus view is that sensitization screening models are not yet validated to definitively predict the de novo sensitizing potential of a novel protein. However, they would be extremely useful in the discovery and research phases of understanding the mechanisms of food allergy development, and may prove fruitful to provide information regarding potential allergenicity risk assessment of future products on a case by case basis. These data and findings were presented at a 2012 international symposium in Prague organized by the Protein Allergenicity Technical Committee of the International Life Sciences Institute’s Health and Environmental Sciences Institute

    Current challenges facing the assessment of the allergenic capacity of food allergens in animal models

    Get PDF
    Food allergy is a major health problem of increasing concern. The insufficiency of protein sources for human nutrition in a world with a growing population is also a significant problem. The introduction of new protein sources into the diet, such as newly developed innovative foods or foods produced using new technologies and production processes, insects, algae, duckweed, or agricultural products from third countries, creates the opportunity for development of new food allergies, and this in turn has driven the need to develop test methods capable of characterizing the allergenic potential of novel food proteins. There is no doubt that robust and reliable animal models for the identification and characterization of food allergens would be valuable tools for safety assessment. However, although various animal models have been proposed for this purpose, to date, none have been formally validated as predictive and none are currently suitable to test the allergenic potential of new foods. Here, the design of various animal models are reviewed, including among others considerations of species and strain, diet, route of administration, dose and formulation of the test protein, relevant controls and endpoints measured

    Science and society in education

    Get PDF
    This booklet is for teachers who want to expand their teaching approaches to include socio-scientific issues which enrich and give meaning to core scientific principles. It is meant to enhance young people’s curiosity about the social and scientific world and raise important questions about issues which affect their lives. We call this approach Socio-Scientific Inquiry-Based Learning, or ‘SSIBL’ for short. Chapters 1 and 2 present an introduction to the theoretical background of SSIBL. In chapter 3, SSIBL will be approached from a classroom perspective, providing a simplified version of the framework and showing teaching examples

    Allergenicity Evaluation of Food Proteins

    Full text link
    In the past decade, food allergies have occurred frequently, and the number of allergic people has been increasing, making it a serious problem that jeopardized public health. A large number of researchers are dedicated to the exploration of food allergy mechanisms and how to prevent and treat food allergies. Allergenicity evaluation of food proteins is the basis of all food allergy-related researches. At present, there are many methods and strategies for evaluating the allergenicity of food proteins, such as bioinformatics analysis, serological analysis, cell experiment, and animal experiment, and each has its own advantages and disadvantages. In addition, there are currently no globally accepted standards for assessing the allergenicity of food proteins. Different methods often lead to differences in conclusions, making the data on food allergies highly variable. The search and construction of an effective standard for allergenic assessment of food allergens will help to reduce the incidence and slow the trend of food allergies

    Twenty-First-Century Genetics and Genomics: Contributions of HPS-Informed Research and Pedagogy

    Full text link
    corecore