32 research outputs found
Quantum Error Correction via Convex Optimization
We show that the problem of designing a quantum information error correcting
procedure can be cast as a bi-convex optimization problem, iterating between
encoding and recovery, each being a semidefinite program. For a given encoding
operator the problem is convex in the recovery operator. For a given method of
recovery, the problem is convex in the encoding scheme. This allows us to
derive new codes that are locally optimal. We present examples of such codes
that can handle errors which are too strong for codes derived by analogy to
classical error correction techniques.Comment: 16 page
Aligning text and phonemes for speech technology applications using an EM-like algorithm
NRC publication: Ye
Robust photometric stereo via low-rank matrix completion and recovery
Abstract. We present a new approach to robustly solve photometric stereo problems. We cast the problem of recovering surface normals from multiple lighting conditions as a problem of recovering a low-rank matrix with both missing entries and corrupted entries, which model all types of non-Lambertian effects such as shadows and specularities. Unlike previous approaches that use Least-Squares or heuristic robust techniques, our method uses advanced convex optimization techniques that are guaranteed to find the correct low-rank matrix by simultaneously fixing its missing and erroneous entries. Extensive experimental results demonstrate that our method achieves unprecedentedly accurate estimates of surface normals in the presence of significant amount of shadows and specularities. The new technique can be used to improve virtually any photometric stereo method including uncalibrated photometric stereo.