64 research outputs found

    Influencing Higher Education Through Field-Based Development in TN LEAD

    Get PDF
    Practitioners are being viewed by professors as partners in the school improvement process and vice versa. (Program Approaches to Administrative Training and Development.

    Dual Enrollment Student Achievement in Various Learning Environments

    Get PDF
    The purpose of this study was to examine whether variations in student achievement in college courses exist between high school students who took the courses as dual enrollment (DE) courses and academically comparable high school students (AIMS scholars) who took the courses upon matriculation to college. Additionally, the researcher explored whether differences exist in DE course grade for students by course environment (online, face-to-face at a high school, or face-to-face at a college.) The researcher used final course grades as determinants of student achievement. The study focused on DE student and AIMS scholar grades in English 111, Biology 101, Math 163, and History 101 courses that were taken between the 2009-2010 and 2013-2014 school years at a community college in Southwest Virginia. The population consisted of 429 AIMS scholars and 2,015 DE students. For this study 3,639 DE student grades and 706 AIMS student grades were used in calculations. The dependent variables in this study were final course grades; the independent variables were DE participation and course delivery environment. Welch’s t tests were used to examine the variations in final grades for DE and non-DE students; ANOVA procedures were used to examine variations in final course grades for DE courses based on delivery environment

    Population growth rate of a common understory herb decreases non-linearly across a gradient of deer herbivory

    Get PDF
    Author Posting. © Elsevier B.V., 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Forest Ecology and Management 257 (2009): 1095-1103, doi:10.1016/j.foreco.2008.11.018.Overabundant white-tailed deer (Odocoileus virginianus) are a significant management problem in North America that exert unprecedented herbivory pressure on native understory forest communities. Conserving understory plant populations requires quantifying a sustainable level of deer herbivory. To date, most population projection models consider only deer presence and absence. To estimate population growth rate along a gradient of herbivory, we focused on Trillium grandiflorum because it is a common understory species and a bellwether of deer effects and forest decline. We used matrix population models, and employed both prospective and retrospective analyses using a regression life table response experiment (LTRE). Deer affect size, stage and population dynamics of T. grandiflorum. Because deer target flowering and large non-flowering stages of T. grandiflorum, these individuals do not produce seed in the year they are browsed and are more likely to regress in stage and size in the following growing season relative to non-browsed plants. Importantly, sustained high browse levels result in populations dominated by small, non-flowering individuals. Our LTRE revealed a significant negative and decelerating relationship between herbivory and λ. This non-linearity occurs at the highest herbivory levels because highly browsed populations become dominated by stages that deer do not consume and are thus buffered from rapid decline. However, population extinction is expected when herbivory is greater than the pivotal value of ~15%. Our study demonstrates that levels of deer herbivory commonly experienced by forest understory perennials are sufficient to cause the loss of T. grandiflorum and likely other co-occurring palatable species.We thank the National Science Foundation (DEB-0105000 and DEB-0108208 to SK), McKinley and Darbarker Research Funds and Botany in Action (Phipps Conservatory and Botanical Garden) for funding

    A seasonal, density-dependent model for the management of an invasive weed

    Get PDF
    Author Posting. © Ecological Society of America, 2013. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 23 (2013): 1893-1905, doi:10.1890/12-1712.1.The population effects of harvest depend on complex interactions between density dependence, seasonality, stage structure, and management timing. Here we present a periodic nonlinear matrix population model that incorporates seasonal density dependence with stage-selective and seasonally selective harvest. To this model, we apply newly developed perturbation analyses to determine how population densities respond to changes in harvest and demographic parameters. We use the model to examine the effects of popular control strategies and demographic perturbations on the invasive weed garlic mustard (Alliaria petiolata). We find that seasonality is a major factor in harvest outcomes, because population dynamics may depend significantly on both the season of management and the season of observation. Strategies that reduce densities in one season can drive increases in another, with strategies giving positive sensitivities of density in the target seasons leading to compensatory effects that invasive species managers should avoid. Conversely, demographic parameters to which density is very elastic (e.g., seeding survival, second-year rosette spring survival, and the flowering to fruiting adult transition for maximum summer densities) may indicate promising management targets.This work was supported by the National Science Foundation (grant DEB-0816514), the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service (grant 05-2290), the Alexander von Humboldt Foundation, and the Academic Programs Office at WHOI

    MIxS-BE : a MIxS extension defining a minimum information standard for sequence data from the built environment

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in ISME Journal 8 (2014): 1-3, doi:10.1038/ismej.2013.176.The need for metadata standards for microbe sampling in the built environment.We would like to thank the Alfred P Sloan Foundation grant FP047325-01-PR for support for this project

    Inclusion of cGAMP within virus-like particle vaccines enhances their immunogenicity

    Get PDF
    Cyclic GMP-AMP (cGAMP) is an immunostimulatory molecule produced by cGAS that activates STING. cGAMP is an adjuvant when administered alongside antigens. cGAMP is also incorporated into enveloped virus particles during budding. Here, we investigate whether inclusion of cGAMP within viral vaccine vectors enhances their immunogenicity. We immunise mice with virus-like particles (VLPs) containing HIV-1 Gag and the vesicular stomatitis virus envelope glycoprotein G (VSV-G). cGAMP loading of VLPs augments CD4 and CD8 T-cell responses. It also increases VLP- and VSV-G-specific antibody titres in a STING-dependent manner and enhances virus neutralisation, accompanied by increased numbers of T follicular helper cells. Vaccination with cGAMP-loaded VLPs containing haemagglutinin induces high titres of influenza A virus neutralising antibodies and confers protection upon virus challenge. This requires cGAMP inclusion within VLPs and is achieved at markedly reduced cGAMP doses. Similarly, cGAMP loading of VLPs containing the SARS-CoV-2 Spike protein enhances Spike-specific antibody titres. cGAMP-loaded VLPs are thus an attractive platform for vaccination

    Beyond R0 : demographic models for variability of lifetime reproductive output

    Get PDF
    © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 6 (2011): e20809, doi:10.1371/journal.pone.0020809.The net reproductive rate measures the expected lifetime reproductive output of an individual, and plays an important role in demography, ecology, evolution, and epidemiology. Well-established methods exist to calculate it from age- or stage-classified demographic data. As an expectation, provides no information on variability; empirical measurements of lifetime reproduction universally show high levels of variability, and often positive skewness among individuals. This is often interpreted as evidence of heterogeneity, and thus of an opportunity for natural selection. However, variability provides evidence of heterogeneity only if it exceeds the level of variability to be expected in a cohort of identical individuals all experiencing the same vital rates. Such comparisons require a way to calculate the statistics of lifetime reproduction from demographic data. Here, a new approach is presented, using the theory of Markov chains with rewards, obtaining all the moments of the distribution of lifetime reproduction. The approach applies to age- or stage-classified models, to constant, periodic, or stochastic environments, and to any kind of reproductive schedule. As examples, I analyze data from six empirical studies, of a variety of animal and plant taxa (nematodes, polychaetes, humans, and several species of perennial plants).Supported by National Science Foundation Grant DEB-0816514 and by a Research Award from the Alexander von Humboldt Foundation

    A standard protocol to report discrete stage-structured demographic information

    Get PDF
    Stage-based demographic methods, such as matrix population models (MPMs), are powerful tools used to address a broad range of fundamental questions in ecology, evolutionary biology and conservation science. Accordingly, MPMs now exist for over 3000 species worldwide. These data are being digitised as an ongoing process and periodically released into two large open-access online repositories: the COMPADRE Plant Matrix Database and the COMADRE Animal Matrix Database. During the last decade, data archiving and curation of COMPADRE and COMADRE, and subsequent comparative research, have revealed pronounced variation in how MPMs are parameterized and reported. Here, we summarise current issues related to the parameterisation and reporting of MPMs that arise most frequently and outline how they affect MPM construction, analysis, and interpretation. To quantify variation in how MPMs are reported, we present results from a survey identifying key aspects of MPMs that are frequently unreported in manuscripts. We then screen COMPADRE and COMADRE to quantify how often key pieces of information are omitted from manuscripts using MPMs. Over 80% of surveyed researchers (n = 60) state a clear benefit to adopting more standardised methodologies for reporting MPMs. Furthermore, over 85% of the 300 MPMs assessed from COMPADRE and COMADRE omitted one or more elements that are key to their accurate interpretation. Based on these insights, we identify fundamental issues that can arise from MPM construction and communication and provide suggestions to improve clarity, reproducibility and future research utilising MPMs and their required metadata. To fortify reproducibility and empower researchers to take full advantage of their demographic data, we introduce a standardised protocol to present MPMs in publications. This standard is linked to www.compa dre-db.org, so that authors wishing to archive their MPMs can do so prior to submission of publications, following examples from other open-access repositories such as DRYAD, Figshare and Zenodo. Combining and standardising MPMs parameterized from populations around the globe and across the tree of life opens up powerful research opportunities in evolutionary biology, ecology and conservation research. However, this potential can only be fully realised by adopting standardised methods to ensure reproducibility

    A standard protocol to report discrete stage-structured demographic information

    Get PDF
    Stage-based demographic methods, such as matrix population models (MPMs), are powerful tools used to address a broad range of fundamental questions in ecology, evolutionary biology and conservation science. Accordingly, MPMs now exist for over 3000 species worldwide. These data are being digitised as an ongoing process and periodically released into two large open-access online repositories: the COMPADRE Plant Matrix Database and the COMADRE Animal Matrix Database. During the last decade, data archiving and curation of COMPADRE and COMADRE, and subsequent comparative research, have revealed pronounced variation in how MPMs are parameterized and reported. Here, we summarise current issues related to the parameterisation and reporting of MPMs that arise most frequently and outline how they affect MPM construction, analysis, and interpretation. To quantify variation in how MPMs are reported, we present results from a survey identifying key aspects of MPMs that are frequently unreported in manuscripts. We then screen COMPADRE and COMADRE to quantify how often key pieces of information are omitted from manuscripts using MPMs. Over 80% of surveyed researchers (n = 60) state a clear benefit to adopting more standardised methodologies for reporting MPMs. Furthermore, over 85% of the 300 MPMs assessed from COMPADRE and COMADRE omitted one or more elements that are key to their accurate interpretation. Based on these insights, we identify fundamental issues that can arise from MPM construction and communication and provide suggestions to improve clarity, reproducibility and future research utilising MPMs and their required metadata. To fortify reproducibility and empower researchers to take full advantage of their demographic data, we introduce a standardised protocol to present MPMs in publications. This standard is linked to www.compadre-db.org, so that authors wishing to archive their MPMs can do so prior to submission of publications, following examples from other open-access repositories such as DRYAD, Figshare and Zenodo. Combining and standardising MPMs parameterized from populations around the globe and across the tree of life opens up powerful research opportunities in evolutionary biology, ecology and conservation research. However, this potential can only be fully realised by adopting standardised methods to ensure reproducibility

    A blood atlas of COVID-19 defines hallmarks of disease severity and specificity.

    Get PDF
    Treatment of severe COVID-19 is currently limited by clinical heterogeneity and incomplete description of specific immune biomarkers. We present here a comprehensive multi-omic blood atlas for patients with varying COVID-19 severity in an integrated comparison with influenza and sepsis patients versus healthy volunteers. We identify immune signatures and correlates of host response. Hallmarks of disease severity involved cells, their inflammatory mediators and networks, including progenitor cells and specific myeloid and lymphocyte subsets, features of the immune repertoire, acute phase response, metabolism, and coagulation. Persisting immune activation involving AP-1/p38MAPK was a specific feature of COVID-19. The plasma proteome enabled sub-phenotyping into patient clusters, predictive of severity and outcome. Systems-based integrative analyses including tensor and matrix decomposition of all modalities revealed feature groupings linked with severity and specificity compared to influenza and sepsis. Our approach and blood atlas will support future drug development, clinical trial design, and personalized medicine approaches for COVID-19
    corecore