222 research outputs found

    The radial effective temperature distribution of steady-state, mass-losing accretion disks

    Get PDF
    Mass loss appears to be a common phenomenon among disk-accreting astrophysical systems. An outflow emanating from an accretion disk can act as a sink for mass, angular momentum and energy and can therefore alter the dissipation rates and effective temperatures across the disk. Here, the radial distributions of dissipation rate and effective temperature across a Keplerian, steady-state, mass-losing accretion disk are derived, using a simple, parametric approach that is sufficiently general to be applicable to many types of dynamical disk wind models. Effective temperature distributions for mass-losing accretion disks in cataclysmic variables are shown explicitly, with parameters chosen to describe both radiation-driven and centrifugally-driven outflows. For realistic wind mass-loss rates of a few percent, only centrifugally-driven outflows -- particularly those in which mass loss is concentrated in the inner disk -- are likely to alter the disk's effective temperature distribution significantly. Accretion disks that drive such outflows could produce spectra and eclipse light curves that are noticeably different from those produced by standard, conservative disks.Comment: 14 pages, 3 figures, accepted for publication in MNRA

    The orbital period and system parameters of the recurrent nova T Pyx

    Get PDF
    T Pyx is a luminous recurrent nova that accretes at a much higher rate than is expected for its photometrically determined orbital period of about 1.8 h. We here provide the first spectroscopic confirmation of the orbital period, P = 1.8295 h (f = 13.118368 +/- 1.1 x 10(-5) c d(-1)), based on time-resolved optical spectroscopy obtained at the Very Large Telescope and the Magellan telescope. We also derive an upper limit of the velocity semi-amplitude of the white dwarf, K 1 = 17.9 +/- 1.6 kms(-1), and estimate amass ratio of q = 0.20 +/- 0.03. If the mass of the donor star is estimated using the period-density relation and theoretical main-sequence mass-radius relation for a slightly inflated donor star, we find M-2 = 0.14 +/- 0.03 M-circle dot. This implies a mass of the primary white dwarf of M-1 = 0.7 +/- 0.2 M-circle dot. If the white-dwarf mass is > 1 M-circle dot, as classical nova models imply, the donor mass must be even higher. We therefore rule out the possibility that T Pyx has evolved beyond the period minimum for cataclysmic variables. We find that the system inclination is constrained to be i approximate to 10 degrees, confirming the expectation that T Pyx is a low-inclination system. We also discuss some of the evolutionary implications of the emerging physical picture of T Pyx. In particular, we show that epochs of enhanced mass transfer (like the present) may accelerate or even dominate the overall evolution of the system, even if they are relatively short-lived. We also point out that such phases may be relevant to the evolution of cataclysmic variables more generally

    Inflation after WMAP3

    Get PDF
    I discuss the current status of inflationary cosmology in light of the recent WMAP 3-year data release. The basic predictions of inflation are all supported by the data. Inflation also makes predictions which have not been well tested by current data but can be by future experiments, most notably a deviation from a scale-invariant power spectrum and the production of primordial gravitational waves. A scale-invariant spectrum is disfavored by current data, but not conclusively. Tensor modes are currently poorly constrained, and slow-roll inflation does not make an unambiguous prediction of the expected amplitude of primordial gravitational waves. A tensor/scalar ratio of r≃0.01r \simeq 0.01 is within reach of near-future measurements.Comment: To appear in the proceedings of Colliders to Cosmic Rays 2007. 8 pages, 2 figures. (V2: Minor typo corrected
    • 

    corecore