35 research outputs found

    O5ā€04ā€01: Trim46 Knockdown Causes Neuronal Tau Redistribution And Increases Axosomatic Tau Diffusion

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152676/1/alzjjalz2019064852.pd

    Frontotemporal lobar dementia mutant tau impairs axonal transport through a protein phosphatase 1Ī³-dependent mechanism

    Get PDF
    Ā© The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Combs, B., Christensen, K. R., Richards, C., Kneynsberg, A., Mueller, R. L., Morris, S. L., Morfini, G., Brady, S. T., & Kanaan, N. M. Frontotemporal lobar dementia mutant tau impairs axonal transport through a protein phosphatase 1Ī³-dependent mechanism. Journal of Neuroscience, 41(45), (2021): 9431-9451, https://doi.org/10.1523/JNEUROSCI.1914-20.2021.Pathologic tau modifications are characteristic of Alzheimer's disease and related dementias, but mechanisms of tau toxicity continue to be debated. Inherited mutations in tau cause early onset frontotemporal lobar dementias (FTLD-tau) and are commonly used to model mechanisms of tau toxicity in tauopathies. Previous work in the isolated squid axoplasm model demonstrated that several pathogenic forms of tau inhibit axonal transport through a mechanism involving activation of protein phosphatase 1 (PP1). Here, we determined that P301L and R5L FTLD mutant tau proteins elicit a toxic effect on axonal transport as monomeric proteins. We evaluated interactions of wild-type or mutant tau with specific PP1 isoforms (Ī±, Ī², and Ī³) to examine how the interaction contributes to this toxic effect using primary rat hippocampal neurons from both sexes. Pull-down and bioluminescence resonance energy transfer experiments revealed selective interactions of wild-type tau with PP1Ī± and PP1Ī³ isoforms, but not PP1Ī², which were significantly increased by the P301L tau mutation. The results from proximity ligation assays confirmed the interaction in primary hippocampal neurons. Moreover, expression of FTLD-linked mutant tau in these neurons enhanced levels of active PP1, also increasing the pausing frequency of fluorescently labeled vesicles in both anterograde and retrograde directions. Knockdown of PP1Ī³, but not PP1Ī±, rescued the cargo-pausing effects of P301L and R5L tau, a result replicated by deleting a phosphatase-activating domain in the amino terminus of P301L tau. These findings support a model of tau toxicity involving aberrant activation of a specific PP1Ī³-dependent pathway that disrupts axonal transport in neurons.This work was supported by National Institutes of Health (NIH) Grants R01 NS082730 (N.M.K. and S.T.B.), R01 AG044372 (N.M.K.), and R01 AG067762 (N.M.K.); NIH/National Institute on Aging, Michigan Alzheimer's Disease Research Center Grant 5P30AG053760 (B.C.); Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Alzheimer's Research Program Award W81XWH-20-1-0174 (B.C.); Alzheimer's Association Research Grants 20-682085 (B.C.), R01 NS118177 (G.A.M.), and R21NS120126 (G.A.M.); Zenith Award from the Alzheimer's Association (S.T.B.); Tau Consortium/Rainwater Foundation (S.T.B.); Neurodegenerative Research (G.A.M.); and the Secchia Family Foundation (N.M.K.)

    Tyrosine phosphatase STEP61 in human dementia and in animal models with amyloid and tau pathology

    No full text
    Abstract Synaptic degeneration is a precursor of synaptic and neuronal loss in neurodegenerative diseases such as Alzheimerā€™s disease (AD) and frontotemporal dementia with tau pathology (FTD-tau), a group of primary tauopathies. A critical role in this degenerative process is assumed by enzymes such as the kinase Fyn and its counterpart, the phosphatase striatal-enriched tyrosine phosphatase 61 (STEP61). Whereas the role of Fyn has been widely explored, less is known about STEP61 that localises to the postsynaptic density (PSD) of glutamatergic neurons. In dementias, synaptic loss is associated with an increased burden of pathological aggregates. Tau pathology is a hallmark of both AD (together with amyloid-Ī² deposition) and FTD-tau. Here, we examined STEP61 and its activity in human and animal brain tissue and observed a correlation between STEP61 and disease progression. In early-stage human AD, an initial increase in the level and activity of STEP61 was observed, which decreased with the loss of the synaptic marker PSD-95; in FTD-tau, there was a reduction in STEP61 and PSD-95 which correlated with clinical diagnosis. In APP23 mice with an amyloid-Ī² pathology, the level and activity of STEP61 were increased in the synaptic fraction compared to wild-type littermates. Similarly, in the K3 mouse model of FTD-tau, which we assessed at two ages compared to wild-type, expression and activity of STEP61 were increased with ageing. Together, these findings suggest that STEP contributes differently to the pathogenic process in AD and FTD-tau, and that its activation may be an early response to a degenerative process

    Axonal Degeneration in Tauopathies: Disease Relevance and Underlying Mechanisms

    No full text
    Tauopathies are a diverse group of diseases featuring progressive dying-back neurodegeneration of specific neuronal populations in association with accumulation of abnormal forms of the microtubule-associated protein tau. It is well-established that the clinical symptoms characteristic of tauopathies correlate with deficits in synaptic function and neuritic connectivity early in the course of disease, but mechanisms underlying these critical pathogenic events are not fully understood. Biochemical in vitro evidence fueled the widespread notion that microtubule stabilization represents tau's primary biological role and that the marked atrophy of neurites observed in tauopathies results from loss of microtubule stability. However, this notion contrasts with the mild phenotype associated with tau deletion. Instead, an analysis of cellular hallmarks common to different tauopathies, including aberrant patterns of protein phosphorylation and early degeneration of axons, suggests that alterations in kinase-based signaling pathways and deficits in axonal transport (AT) associated with such alterations contribute to the loss of neuronal connectivity triggered by pathogenic forms of tau. Here, we review a body of literature providing evidence that axonal pathology represents an early and common pathogenic event among human tauopathies. Observations of axonal degeneration in animal models of specific tauopathies are discussed and similarities to human disease highlighted. Finally, we discuss potential mechanistic pathways other than microtubule destabilization by which disease-related forms of tau may promote axonopathy

    Single-molecule imaging of Tau reveals how phosphorylation affects its movement and confinement in living cells

    No full text
    Abstract Tau is a microtubule-associated protein that is regulated by post-translational modifications. The most studied of these modifications is phosphorylation, which affects Tauā€™s aggregation and loss- and gain-of-functions, including the interaction with microtubules, in Alzheimerā€™s disease and primary tauopathies. However, little is known about how Tauā€™s phosphorylation state affects its dynamics and organisation at the single-molecule level. Here, using quantitative single-molecule localisation microscopy, we examined how mimicking or abrogating phosphorylation at 14 disease-associated serine and threonine residues through mutagenesis influences the behaviour of Tau in live Neuro-2a cells. We observed that both pseudohyperphosphorylated Tau (TauE14) and phosphorylation-deficient Tau (TauA14) exhibit a heterogeneous mobility pattern near the plasma membrane. Notably, we found that the mobility of TauE14 molecules was higher than wild-type Tau molecules, while TauA14 molecules displayed lower mobility. Moreover, TauA14 was organised in a filament-like structure resembling cytoskeletal filaments, within which TauA14 exhibited spatial and kinetic heterogeneity. Our study provides a direct visualisation of how the phosphorylation state of Tau affects its spatial and temporal organisation, presumably reflecting the phosphorylation-dependent changes in the interactions between Tau and its partners. We suggest that alterations in Tau dynamics resulting from aberrant changes in phosphorylation could be a critical step in its pathological dysregulation

    Axonal Degeneration in Tauopathies: Disease Relevance and Underlying Mechanisms

    No full text
    Tauopathies are a diverse group of diseases featuring progressive dying-back neurodegeneration of specific neuronal populations in association with accumulation of abnormal forms of the microtubule-associated protein tau. It is well-established that the clinical symptoms characteristic of tauopathies correlate with deficits in synaptic function and neuritic connectivity early in the course of disease, but mechanisms underlying these critical pathogenic events are not fully understood. Biochemical in vitro evidence fueled the widespread notion that microtubule stabilization represents tauā€™s primary biological role and that the marked atrophy of neurites observed in tauopathies results from loss of microtubule stability. However, this notion contrasts with the mild phenotype associated with tau deletion. Instead, an analysis of cellular hallmarks common to different tauopathies, including aberrant patterns of protein phosphorylation and early degeneration of axons, suggests that alterations in kinase-based signaling pathways and deficits in axonal transport (AT) associated with such alterations contribute to the loss of neuronal connectivity triggered by pathogenic forms of tau. Here, we review a body of literature providing evidence that axonal pathology represents an early and common pathogenic event among human tauopathies. Observations of axonal degeneration in animal models of specific tauopathies are discussed and similarities to human disease highlighted. Finally, we discuss potential mechanistic pathways other than microtubule destabilization by which disease-related forms of tau may promote axonopath

    Quantitative and semi-quantitative measurements of axonal degeneration in tissue and primary neuron cultures

    No full text
    Background Axon viability is critical for maintaining neural connectivity, which is central to neural functionality. Many neurodegenerative diseases (e.g., Parkinsonā€™s disease (PD) and Alzheimerā€™s disease) appear to involve extensive axonal degeneration that often precedes somatic loss in affected neural populations. Axonal degeneration involves a number of intracellular pathways and characteristic changes in axon morphology (i.e., swelling, fragmentation, and loss). New method We describe a relatively simple set of methods to quantify the axonal degeneration using the 6-hydroxydopamine neurotoxin model of PD in rats and a colchicine-induced model in primary rat neurons. Specifically, approaches are described that use the spaceballs stereological probe for tissue sections and petrimetrics stereological probe for cultured neurons, and image analysis techniques in both tissue sections and cultured neurons. Results These methods provide a mechanism for obtaining quantitative and semi-quantitative data to track the extent of axonal degeneration and may prove useful as outcome measures in studies aimed at preventing or slowing axonal degeneration in disease models. Comparison with existing methods Existing methods of quantification of axonal degeneration use densitometry and manual counts of axonal projections, but they do not utilize the random, unbiased systematic sampling approaches that are characteristic of stereological methods. The ImageJ thresholding analyses described here provide a descriptive method for quantifying the state of axonal degeneration. Conclusions These methods provide an efficient and effective means to quantify the extent and state of axonal degeneration in animal tissue and cultured neurons and can be used in other models for the same purposes

    Altered ribosomal function and protein synthesis caused by tau

    No full text
    Abstract The synthesis of new proteins is a fundamental aspect of cellular life and is required for many neurological processes, including the formation, updating and extinction of long-term memories. Protein synthesis is impaired in neurodegenerative diseases including tauopathies, in which pathology is caused by aberrant changes to the microtubule-associated protein tau. We recently showed that both global de novo protein synthesis and the synthesis of select ribosomal proteins (RPs) are decreased in mouse models of frontotemporal dementia (FTD) which express mutant forms of tau. However, a comprehensive analysis of the effect of FTD-mutant tau on ribosomes is lacking. Here we used polysome profiling, de novo protein labelling and mass spectrometry-based proteomics to examine how ribosomes are altered in models of FTD. We identified 10 RPs which were decreased in abundance in primary neurons taken from the K3 mouse model of FTD. We further demonstrate that expression of human tau (hTau) decreases both protein synthesis and biogenesis of the 60S ribosomal subunit, with these effects being exacerbated in the presence of FTD-associated tau mutations. Lastly, we demonstrate that expression of the amino-terminal projection domain of hTau is sufficient to reduce protein synthesis and ribosomal biogenesis. Together, these data reinforce a role for tau in impairing ribosomal function
    corecore