159 research outputs found
Collective oscillations driven by correlation in the nonlinear optical regime
We present an analytical and numerical study of the coherent exciton
polarization including exciton-exciton correlation. The time evolution after
excitation with ultrashort optical pulses can be divided into a slowly varying
polarization component and novel ultrafast collective modes. The frequency and
damping of the collective modes are determined by the high-frequency properties
of the retarded two-exciton correlation function, which includes Coulomb
effects beyond the mean-field approximation. The overall time evolution depends
on the low-frequency spectral behavior. The collective mode, well separated
from the slower coherent density evolution, manifests itself in the coherent
emission of a resonantly excited excitonic system, as demonstrated numerically.Comment: 4 pages, 4 figures, accepted for publication in Physical Review
Letter
Ultrafast Coulomb-induced dynamics of 2D magnetoexcitons
We study theoretically the ultrafast nonlinear optical response of quantum
well excitons in a perpendicular magnetic field. We show that for
magnetoexcitons confined to the lowest Landau levels, the third-order
four-wave-mixing (FWM) polarization is dominated by the exciton-exciton
interaction effects. For repulsive interactions, we identify two regimes in the
time-evolution of the optical polarization characterized by exponential and
{\em power law} decay of the FWM signal. We describe these regimes by deriving
an analytical solution for the memory kernel of the two-exciton wave-function
in strong magnetic field. For strong exciton-exciton interactions, the decay of
the FWM signal is governed by an antibound resonance with an
interaction-dependent decay rate. For weak interactions, the continuum of
exciton-exciton scattering states leads to a long tail of the time-integrated
FWM signal for negative time delays, which is described by the product of a
power law and a logarithmic factor. By combining this analytic solution with
numerical calculations, we study the crossover between the exponential and
non-exponential regimes as a function of magnetic field. For attractive
exciton-exciton interaction, we show that the time-evolution of the FWM signal
is dominated by the biexcitonic effects.Comment: 41 pages with 11 fig
Ultrafast Nonlinear Optical Response of Strongly Correlated Systems: Dynamics in the Quantum Hall Effect Regime
We present a theoretical formulation of the coherent ultrafast nonlinear
optical response of a strongly correlated system and discuss an example where
the Coulomb correlations dominate. We separate out the correlated contributions
to the third-order nonlinear polarization, and identify non-Markovian dephasing
effects coming from the non-instantaneous interactions and propagation in time
of the collective excitations of the many-body system. We discuss the
signatures, in the time and frequency dependence of the four-wave-mixing (FWM)
spectrum, of the inter-Landau level magnetoplasmon (MP) excitations of the
two-dimensional electron gas (2DEG) in a perpendicular magnetic field. We
predict a resonant enhancement of the lowest Landau level (LL) FWM signal, a
strong non-Markovian dephasing of the next LL magnetoexciton (X), a symmetric
FWM temporal profile, and strong oscillations as function of time delay, of
quantum kinetic origin. We show that the correlation effects can be controlled
experimentally by tuning the central frequency of the optical excitation
between the two lowest LLs.Comment: 21 pages, 10 figure
Theory of exciton-exciton correlation in nonlinear optical response
We present a systematic theory of Coulomb interaction effects in the
nonlinear optical processes in semiconductors using a perturbation series in
the exciting laser field. The third-order dynamical response consists of
phase-space filling correction, mean-field exciton-exciton interaction, and
two-exciton correlation effects expressed as a force-force correlation
function. The theory provides a unified description of effects of bound and
unbound biexcitons, including memory-effects beyond the Markovian
approximation. Approximations for the correlation function are presented.Comment: RevTex, 35 pages, 10 PostScript figs, shorter version submitted to
Physical Review
Single particle trajectories reveal active endoplasmic reticulum luminal flow
The endoplasmic reticulum (ER), a network of membranous sheets and pipes, supports functions encompassing biogenesis of secretory proteins and delivery of functional solutes throughout the cell[1, 2]. Molecular mobility through the ER network enables these functionalities, but diffusion alone is not sufficient to explain luminal transport across supramicrometre distances. Understanding the ER structureâfunction relationship is critical in light of mutations in ER morphology-regulating proteins that give rise to neurodegenerative disorders[3, 4]. Here, super-resolution microscopy and analysis of single particle trajectories of ER luminal proteins revealed that the topological organization of the ER correlates with distinct trafficking modes of its luminal content: with a dominant diffusive component in tubular junctions and a fast flow component in tubules. Particle trajectory orientations resolved over time revealed an alternating current of the ER contents, while fast ER super-resolution identified energy-dependent tubule contraction events at specific points as a plausible mechanism for generating active ER luminal flow. The discovery of active flow in the ER has implications for timely ER content distribution throughout the cell, particularly important for cells with extensive ER-containing projections such as neurons.Wellcome Trust - 3-3249/Z/16/Z and 089703/Z/09/Z [Kaminski]
UK Demential Research Institute [Avezov]
Wellcome Trust - 200848/Z/16/Z, WT: UNS18966 [Ron]
FRM Team Research Grant [Holcman]
Engineering and Physical Sciences Research Council (EPSRC) - EP/L015889/1 and EP/H018301/1 [Kaminski]
Medical Research Council (MRC) - MR/K015850/1 and MR/K02292X/1 [Kaminski
Super-Resolution Dynamic Imaging of Dendritic Spines Using a Low-Affinity Photoconvertible Actin Probe
The actin cytoskeleton of dendritic spines plays a key role in morphological aspects of synaptic plasticity. The detailed analysis of the spine structure and dynamics in live neurons, however, has been hampered by the diffraction-limited resolution of conventional fluorescence microscopy. The advent of nanoscopic imaging techniques thus holds great promise for the study of these processes. We implemented a strategy for the visualization of morphological changes of dendritic spines over tens of minutes at a lateral resolution of 25 to 65 nm. We have generated a low-affinity photoconvertible probe, capable of reversibly binding to actin and thus allowing long-term photoactivated localization microscopy of the spine cytoskeleton. Using this approach, we resolve structural parameters of spines and record their long-term dynamics at a temporal resolution below one minute. Furthermore, we have determined changes in the spine morphology in response to pharmacologically induced synaptic activity and quantified the actin redistribution underlying these changes. By combining PALM imaging with quantum dot tracking, we could also simultaneously visualize the cytoskeleton and the spine membrane, allowing us to record complementary information on the morphological changes of the spines at super-resolution
- âŠ