973 research outputs found
Quantum leakage detection using a model-independent dimension witness
Users of quantum computers must be able to confirm they are indeed
functioning as intended, even when the devices are remotely accessed. In
particular, if the Hilbert space dimension of the components are not as
advertised -- for instance if the qubits suffer leakage -- errors can ensue and
protocols may be rendered insecure. We refine the method of delayed vectors,
adapted from classical chaos theory to quantum systems, and apply it remotely
on the IBMQ platform -- a quantum computer composed of transmon qubits. The
method witnesses, in a model-independent fashion, dynamical signatures of
higher-dimensional processes. We present evidence, under mild assumptions, that
the IBMQ transmons suffer state leakage, with a value no larger than
under a single qubit operation. We also estimate the number
of shots necessary for revealing leakage in a two-qubit system.Comment: 11 pages, 5 figure
Coarse-graining in retrodictive quantum state tomography
Quantum state tomography often operates in the highly idealised scenario of
assuming perfect measurements. The errors implied by such an approach are
entwined with other imperfections relating to the information processing
protocol or application of interest. We consider the problem of retrodicting
the quantum state of a system, existing prior to the application of random but
known phase errors, allowing those errors to be separated and removed. The
continuously random nature of the errors implies that there is only one click
per measurement outcome -- a feature having a drastically adverse effect on
data-processing times. We provide a thorough analysis of coarse-graining under
various reconstruction algorithms, finding dramatic increases in speed for only
modest sacrifices in fidelity
Towards optimal experimental tests on the reality of the quantum state
The Barrett--Cavalcanti--Lal--Maroney (BCLM) argument stands as the most effective means of demonstrating the reality of the quantum state. Its advantages include being derived from very few assumptions, and a robustness to experimental error. Finding the best way to implement the argument experimentally is an open problem, however, and involves cleverly choosing sets of states and measurements. I show that techniques from convex optimisation theory can be leveraged to numerically search for these sets, which then form a recipe for experiments that allow for the strongest statements about the ontology of the wavefunction to be made. The optimisation approach presented is versatile, efficient and can take account of the finite errors present in any real experiment. I find significantly improved low-cardinality sets which are guaranteed partially optimal for a BCLM test in low Hilbert space dimension. I further show that mixed states can be more optimal than pure states
Subtleties of witnessing quantum coherence in non-isolated systems
Identifying non-classicality unambiguously and inexpensively is a
long-standing open challenge in physics. The No-Signalling-In-Time protocol was
developed as an experimental test for macroscopic realism, and serves as a
witness of quantum coherence in isolated quantum systems by comparing the
quantum state to its completely dephased counterpart. We show that it provides
a lower bound on a certain resource-theoretic coherence monotone. We go on to
generalise the protocol to the case where the system of interest is coupled to
an environment. Depending on the manner of the generalisation, the resulting
witness either reports on system coherence alone, or on a disjunction of system
coherence with either (i) the existence of non-classical system-environment
correlations or (ii) non-negligible dynamics in the environment. These are
distinct failure modes of the Born approximation in non-isolated systems.Comment: 16pp, 2 figs, 5 thms. v2: typos corrected, references added and small
change to title to reflect that of published versio
Quantum process tomography via completely positive and trace-preserving projection
We present an algorithm for projecting superoperators onto the set of
completely positive, trace-preserving maps. When combined with gradient descent
of a cost function, the procedure results in an algorithm for quantum process
tomography: finding the quantum process that best fits a set of sufficient
observations. We compare the performance of our algorithm to the diluted
iterative algorithm as well as second-order solvers interfaced with the popular
CVX package for MATLAB, and find it to be significantly faster and more
accurate while guaranteeing a physical estimate.Comment: 13pp, 8 fig
Quantum sensors based on weak-value amplification cannot overcome decoherence
Sensors that harness exclusively quantum phenomena (such as entanglement) can
achieve superior performance compared to those employing only classical
principles. Recently, a technique based on postselected, weakly-performed
measurements has emerged as a method of overcoming technical noise in the
detection and estimation of small interaction parameters, particularly in
optical systems. The question of which other types of noise may be combatted
remains open. We here analyze whether the effect can overcome decoherence in a
typical field sensing scenario. Benchmarking a weak, postselected measurement
strategy against a strong, direct strategy we conclude that no advantage is
achievable, and that even a small amount of decoherence proves catastrophic to
the weak-value amplification technique.Comment: Published version with improvements to presentation, including
clarifying our understanding of technical noise and quantum nois
- …