25 research outputs found

    Table S2: fTCD categories for language lateralisation by group and sex

    Get PDF
    Background It has been suggested that failure to establish cerebral lateralisation may be related to developmental language disorder (DLD). There has been weak support for any link with handedness, but more consistent reports of associations with functional brain lateralisation for language. The consistency of lateralisation across different functions may also be important. We aimed to replicate previous findings of an association between DLD and reduced laterality on a quantitative measure of hand preference (reaching across the midline) and on language laterality assessed using functional transcranial Doppler ultrasound (fTCD). Methods From a sample of twin children aged from 6;0 to 11;11 years, we identified 107 cases of DLD and 156 typically-developing comparison cases for whom we had useable data from fTCD yielding a laterality index (LI) for language function during an animation description task. Handedness data were also available for these children. Results Indices of handedness and language laterality for this twin sample were similar to those previously reported for single-born children. There were no differences between the DLD and TD groups on measures of handedness or language lateralisation, or on a categorical measure of consistency of left hemisphere dominance. Contrary to prediction, there was a greater incidence of right lateralisation for language in the TD group (19.90%) than the DLD group (9.30%), confirming that atypical laterality is not inconsistent with typical language development. We also failed to replicate associations between language laterality and language test scores. Discussion and Conclusions Given the large sample studied here and the range of measures, we suggest that previous reports of atypical manual or language lateralisation in DLD may have been false positives

    Genomes of trombidid mites reveal novel predicted allergens and laterally-transferred genes associated with secondary metabolism

    Get PDF
    Trombidid mites have a unique lifecycle in which only the larval stage is ectoparasitic. In the superfamily Trombiculoidea (“chiggers”), the larvae feed preferentially on vertebrates, including humans. Species in the genus Leptotrombidium are vectors of a potentially fatal bacterial infection, scrub typhus, which affects 1 million people annually. Moreover, chiggers can cause pruritic dermatitis (trombiculiasis) in humans and domesticated animals. In the Trombidioidea (velvet mites), the larvae feed on other arthropods and are potential biological control agents for agricultural pests. Here, we present the first trombidid mites genomes, obtained both for a chigger, Leptotrombidium deliense, and for a velvet mite, Dinothrombium tinctorium

    Modeling Contextual Effects in Developmental Research:Linking Theory and Method in the Study of Social Development

    Full text link
    This special section was inspired by the recent increased interest and methodological advances in the assessment of context‐specificity in child and adolescent social development. While the effects of groups, situations, and social relationships on cognitive, affective and behavioral development have long been acknowledged in theoretical discussions of social development, empirical research has largely relied on the assessment of individual differences rather than contextual differences in these processes—perhaps due to the fact that advanced data analytic techniques are required to access contextual dependencies in such data. While still developing, best practice data analytic techniques enable us to access the ‘social’ of social development in more precision today than ever before. In this special section we examine three of these techniques through the work of our invited authors

    A Familial Mutation Renders Atrial Natriuretic Peptide Resistant to Proteolytic Degradation*

    Full text link
    A heterozygous frameshift mutation causing a 12-amino acid extension to the C terminus of atrial natriuretic peptide (ANP) was recently genetically linked to patients with familial atrial fibrillation (Hodgson-Zingman, D. M., Karst, M. L., Zingman, L. V., Heublein, D. M., Darbar, D., Herron, K. J., Ballew, J. D., de Andrade, M., Burnett, J. C., Jr., and Olson, T. M. (2008) N. Engl. J. Med. 359, 158–165). The frameshift product (fsANP), but not wild-type ANP (wtANP), was elevated in the serum of affected patients, but the molecular basis for the elevated peptide concentrations was not determined. Here, we measured the ability of fsANP to interact with natriuretic peptide receptors and to be proteolytically degraded. fsANP and wtANP bound and activated human NPR-A and NPR-C similarly, whereas fsANP had a slightly increased efficacy for human NPR-B. Proteolytic susceptibility was addressed with novel bioassays that measure the time required for kidney membranes or purified neutral endopeptidase to abolish ANP-dependent activation of NPR-A. The half-life of fsANP was markedly greater than that of wtANP in both assays. Additional membrane proteolysis studies indicated that wtANP and fsANP are preferentially degraded by neutral endopeptidase and serine peptidases, respectively. These data indicate that the familial ANP mutation associated with atrial fibrillation has only minor effects on natriuretic peptide receptor interactions but markedly modifies peptide proteolysis
    corecore