320 research outputs found
The Fracture Energy and Some Mechanical Properties of a Polyurethane Elastomer
The energy required to form a unit of new surface in the fracture of a polyurethane elastomer is determined. The rate sensitivity of the material has been reduced by swelling it in toluene. This paper primarily describes the experimental work of measuring the lower limit of the fracture energy. With this value and the creep compliance as a basis, the rate dependence of fracture energy for the unswollen material has been determined. It is thus shown that the dependence of the fracture energy on the rate of crack propagation can be explained by energy dissipation around the tip of the crack. Good agreement between the theoretically and experimentally determined relationships for the rate-sensitive fracture energy is demonstrated
Crack propagation in a linearly viscoelastic strip
The tip velocity of a crack propagating through a viscoelastic material depends on geometry, applied load and its history, and material properties. A consideration of the work done by the unloading tractions at the crack tip shows that, for a large crack propagating through an infinitely long strip under constant lateral strain, the rate of propagation can be calculated from a knowledge of the intrinsic fracture energy (a material constant), the material creep compliance, and an additional size parameter. This parameter vanishes from the analysis if the material is elastic, and the familiar instability criterion is obtained in this case. Comparison with experimental data is provided and the consequences of step loadings are examined
Recommended from our members
Hydrothermal interaction of solid wafers of Topopah Spring Tuff with J-13 water and distilled water at 90, 150, and 250{sup 0}C, using Dickson-type, gold-bag rocking autoclaves
The Nevada Nuclear Waste Storage Investigations Project has conducted experiments to study the hydrothermal interaction of rock and water representative of a potential high-level waste repository at Yucca Mountain, Nevada. The results of these experiments help define the near-field repository environment during and shortly after the thermal period that results from the emplacement of nuclear waste. When considered in conjunction with results contained in companion reports, these results can be used to assess our ability to accelerate tests using the surface area/volume parameter and/or temperature. These rock-water interaction experiments were conducted with solid polished wafers cut from both drillcore and outcrop samples of Topopah tuff, using both a natural ground water and distilled water as the reacting fluid. Pre- and post-test characterization of the reacting materials was extensive. Post-test identification and chemical analysis of secondary phases resulting from the hydrothermal interactions were aided by using monoliths of tuff rather than crushed material. All experiments were run in Dickson-type, gold-bag rocking autoclaves that were periodically sampled at in situ conditions. A total of nine short-term (up to 66-day) experiments were run in this series; these experiments covered the range from 90 to 250{sup 0}C and from 50 to 100 bar. The results obtained from the experiments have been used to evaluate the modeled results produced by calculations using the geochemical reaction process code EQ3/6. 31 refs., 37 figs., 7 tabs
Hydrothermal Interaction of Topopah Spring Tuff With J-13 Water as a Function of Temperature
In support of the Nevada Nuclear Waste Storage Investigations Project experiments were conducted to study the hydrothermal interaction of rock and water representative of a potential repository in tuff. These experiments provided data relevant to near-field repository conditions that can be used to: assess the ability to use accelerated tests based on the SA/V (surface area/volume) parameter and temperature; allow the measurement of chemical changes in phases present in the tuff before reaction as well as the identification and chemical analysis of secondary phases resulting from hydrothermal reactions; and demonstrate the usefulness of geochemical modeling in a repository environment using the EQ3/6 thermodynamic/kinetic geochemical modeling code. Crushed tuff and polished wafers of tuff were reacted with a natural ground water in Dickson-type gold-cell rocking autoclaves which were periodically sampled under in-situ conditions. Results were compared with predictions based on the EQ3/6 geochemical modeling code. Eight short-term experiments (2 to 3 months) at 150{sup 0}C and 250{sup 0}C have been completed using tuff from both drillcore and outcrop. Long-term experiments at 90{sup 0}C and 150{sup 0}C using drillcore polished wafers are in progress. This paper will focus on the results of the 150{sup 0}C and 250{sup 0}C experiments using drill core polished wafers. 11 references, 4 figures
A high-pressure atomic force microscope for imaging in supercritical carbon dioxide
A high-pressure atomic force microscope (AFM) that enables in situ, atomic scale measurements of topography of solid surfaces in contact with supercritical CO{sub 2} (scCO{sub 2}) fluids has been developed. This apparatus overcomes the pressure limitations of the hydrothermal AFM and is designed to handle pressures up to 100 atm at temperatures up to ∼350 K. A standard optically-based cantilever deflection detection system was chosen. When imaging in compressible supercritical fluids such as scCO{sub 2} , precise control of pressure and temperature in the fluid cell is the primary technical challenge. Noise levels and imaging resolution depend on minimization of fluid density fluctuations that change the fluid refractive index and hence the laser path. We demonstrate with our apparatus in situ atomic scale imaging of a calcite (CaCO{sub 3}) mineral surface in scCO{sub 2}; both single, monatomic steps and dynamic processes occurring on the (10{overbar 1}4) surface are presented. This new AFM provides unprecedented in situ access to interfacial phenomena at solid–fluid interfaces under pressure
Small deformations of supersymmetric Wilson loops and open spin-chains
We study insertions of composite operators into Wilson loops in N=4
supersymmetric Yang-Mills theory in four dimensions. The loops follow a
circular or straight path and the composite insertions transform in the adjoint
representation of the gauge group. This provides a gauge invariant way to
define the correlator of non-singlet operators. Since the basic loop preserves
an SL(2,R) subgroup of the conformal group, we can assign a conformal dimension
to those insertions and calculate the corrections to the classical dimension in
perturbation theory. The calculation turns out to be very similar to that of
single-trace local operators and may also be expressed in terms of a
spin-chain. In this case the spin-chain is open and at one-loop order has
Neumann boundary conditions on the type of scalar insertions that we consider.
This system is integrable and we write the Bethe ansatz describing it. We
compare the spectrum in the limit of large angular momentum both in the dilute
gas approximation and the thermodynamic limit to the relevant string solution
in the BMN limit and in the full AdS_5 x S^5 metric and find agreement.Comment: 40 pages, amstex, 4 figures. V2: Corrected eqn (2.14) and some
equations in section 5. Version to appear in JHE
Recent advances in pulsed-laser deposition of complex-oxides
Pulsed-laser deposition (PLD) is one of the most promising techniques for the
formation of complex-oxide heterostructures, superlattices, and well-controlled
interfaces. The first part of this paper presents a review of several useful
modifications of the process, including methods inspired by combinatorial
approaches. We then discuss detailed growth kinetics results, which illustrate
that 'true' layer-by-layer (LBL) growth can only be approached, but not fully
met, even though many characterization techniques reveal interfaces with
unexpected sharpness. Time-resolved surface x-ray diffraction measurements show
that crystallization and the majority of interlayer mass transport occur on
time scales that are comparable to those of the plume/substrate interaction,
providing direct experimental evidence that a growth regime exists in which
non-thermal processes dominate PLD. This understanding shows how kinetic growth
manipulation can bring PLD closer to ideal LBL than any other growth method
available today.Comment: 37 pages, 9 figures. Revie
The generalized cusp in ABJ(M) N = 6 Super Chern-Simons theories
We construct a generalized cusped Wilson loop operator in N = 6 super
Chern-Simons-matter theories which is locally invariant under half of the
supercharges. It depends on two parameters and interpolates smoothly between
the 1/2 BPS line or circle and a pair of antiparallel lines, representing a
natural generalization of the quark-antiquark potential in ABJ(M) theories. For
particular choices of the parameters we obtain 1/6 BPS configurations that,
mapped on S^2 by a conformal transformation, realize a three-dimensional
analogue of the wedge DGRT Wilson loop of N = 4. The cusp couples, in addition
to the gauge and scalar fields of the theory, also to the fermions in the
bifundamental representation of the U(N)xU(M) gauge group and its expectation
value is expressed as the holonomy of a suitable superconnection. We discuss
the definition of these observables in terms of traces and the role of the
boundary conditions of fermions along the loop. We perform a complete two-loop
analysis, obtaining an explicit result for the generalized cusp at the second
non-trivial order, from which we read off the interaction potential between
heavy 1/2 BPS particles in the ABJ(M) model. Our results open the possibility
to explore in the three-dimensional case the connection between localization
properties and integrability, recently advocated in D = 4.Comment: 53 pages, 10 figures, added references, this is the version appeared
on JHE
- …