10 research outputs found
Results of IEA SHC Task 45: Large Scale Solar Heating and Cooling Systems. Subtask A: “Collectors and Collector Loop”
AbstractThe IEA SHC Task 45 Large Scale Solar Heating and Cooling Systems, carried out between January 2011 and December 2014, had the main objective to assist in the development of a strong and sustainable market of large solar heating systems by focusing on high performance and reliability of systems. Within this project, subtask A had the more specific objectives of investigating ways to evaluate the influence that different operating conditions can have on the collector performance, assure proper and safe installation of large solar collector fields, and guarantee their performance and yearly energy output. The results of the different investigations are presented, with a particular focus on how different parameters such as tilt, flow rate and fluid type, can affect the collector efficiency. Other presented results include methods to guarantee and check the thermal performance of a solar collector field and guidelines to design collector fields in such a way that the flow distribution is improved and the risks related to stagnation are minimized
Direct comparison of SARS-CoV-2 variant specific neutralizing antibodies in human and hamster sera
Antigenic characterization of newly emerging SARS-CoV-2 variants is important to assess their immune escape and judge the need for future vaccine updates. To bridge data obtained from animal sera with human sera, we analyzed neutralizing antibody titers in human and hamster single infection sera in a highly controlled setting using the same authentic virus neutralization assay performed in one laboratory. Using a Bayesian framework, we found that titer fold changes in hamster sera corresponded well to human sera and that hamster sera generally exhibited higher reactivity.</p
Direct comparison of SARS-CoV-2 variant specific neutralizing antibodies in human and hamster sera
Antigenic characterization of newly emerging SARS-CoV-2 variants is important to assess their immune escape and judge the need for future vaccine updates. To bridge data obtained from animal sera with human sera, we analyzed neutralizing antibody titers in human and hamster single infection sera in a highly controlled setting using the same authentic virus neutralization assay performed in one laboratory. Using a Bayesian framework, we found that titer fold changes in hamster sera corresponded well to human sera and that hamster sera generally exhibited higher reactivity.</p
Recommended from our members
Characterizing SARS-CoV-2 neutralization profiles after bivalent boosting using antigenic cartography.
Since emergence of the initial SARS-CoV-2 BA.1, BA.2 and BA.5 variants, Omicron has diversified substantially. Antigenic characterization of these new variants is important to analyze their potential immune escape from population immunity and implications for future vaccine composition. Here, we describe an antigenic map based on human single-exposure sera and live-virus isolates that includes a broad selection of recently emerged Omicron variants such as BA.2.75, BF.7, BQ, XBB and XBF variants. Recent Omicron variants clustered around BA.1 and BA.5 with some variants further extending the antigenic space. Based on this antigenic map we constructed antibody landscapes to describe neutralization profiles after booster immunization with bivalent mRNA vaccines based on ancestral virus and either BA.1 or BA.4/5. Immune escape of BA.2.75, BQ, XBB and XBF variants was also evident in bivalently boosted individuals, however, cross-neutralization was improved for those with hybrid immunity. Our results indicate that future vaccine updates are needed to induce cross-neutralizing antibodies against currently circulating variants
Recommended from our members
Characterizing SARS-CoV-2 neutralization profiles after bivalent boosting using antigenic cartography.
Since emergence of the initial SARS-CoV-2 BA.1, BA.2 and BA.5 variants, Omicron has diversified substantially. Antigenic characterization of these new variants is important to analyze their potential immune escape from population immunity and implications for future vaccine composition. Here, we describe an antigenic map based on human single-exposure sera and live-virus isolates that includes a broad selection of recently emerged Omicron variants such as BA.2.75, BF.7, BQ, XBB and XBF variants. Recent Omicron variants clustered around BA.1 and BA.5 with some variants further extending the antigenic space. Based on this antigenic map we constructed antibody landscapes to describe neutralization profiles after booster immunization with bivalent mRNA vaccines based on ancestral virus and either BA.1 or BA.4/5. Immune escape of BA.2.75, BQ, XBB and XBF variants was also evident in bivalently boosted individuals, however, cross-neutralization was improved for those with hybrid immunity. Our results indicate that future vaccine updates are needed to induce cross-neutralizing antibodies against currently circulating variants
Recommended from our members
Characterizing SARS-CoV-2 neutralization profiles after bivalent boosting using antigenic cartography
Acknowledgements: We thank Albert Falch, Verena Pittl, Maria Huber, Anna Sauerwein, Anne Heberle, and Toni Rabensteiner for excellent technical and organizational support. We thank Prof. Florian Krammer and Prof. Viviana Simon for sharing their Delta isolate and Prof. Oliver T. Keppler and Dr. Marcel Stern for sharing their Gamma isolate with us. The European Union’s Horizon 2020 research and innovation program under grant agreement No. 101016174 and the Austrian Science Fund (FWF) with project number P35159-B supported J.K. The NIH NIAID Centers of Excellence for Influenza Research and Response (CEIRR) contract 75N93021C00014 as part of the SAVE program supported J.K., D.S., and A.N. A.N. was supported by the Gates Cambridge Trust.Funder: European Union’s Horizon 2020 research and innovation program under grant agreement No. 101016174 NIH NIAID Centers of Excellence for Influenza Research and Response (CEIRR) contract 75N93021C00014 as part of the SAVE programFunder: Gates Cambridge Trust; doi: https://doi.org/10.13039/501100005370Since emergence of the initial SARS-CoV-2 BA.1, BA.2 and BA.5 variants, Omicron has diversified substantially. Antigenic characterization of these new variants is important to analyze their potential immune escape from population immunity and implications for future vaccine composition. Here, we describe an antigenic map based on human single-exposure sera and live-virus isolates that includes a broad selection of recently emerged Omicron variants such as BA.2.75, BF.7, BQ, XBB and XBF variants. Recent Omicron variants clustered around BA.1 and BA.5 with some variants further extending the antigenic space. Based on this antigenic map we constructed antibody landscapes to describe neutralization profiles after booster immunization with bivalent mRNA vaccines based on ancestral virus and either BA.1 or BA.4/5. Immune escape of BA.2.75, BQ, XBB and XBF variants was also evident in bivalently boosted individuals, however, cross-neutralization was improved for those with hybrid immunity. Our results indicate that future vaccine updates are needed to induce cross-neutralizing antibodies against currently circulating variants
Recommended from our members
Characterizing SARS-CoV-2 neutralization profiles after bivalent boosting using antigenic cartography
Acknowledgements: We thank Albert Falch, Verena Pittl, Maria Huber, Anna Sauerwein, Anne Heberle, and Toni Rabensteiner for excellent technical and organizational support. We thank Prof. Florian Krammer and Prof. Viviana Simon for sharing their Delta isolate and Prof. Oliver T. Keppler and Dr. Marcel Stern for sharing their Gamma isolate with us. The European Union’s Horizon 2020 research and innovation program under grant agreement No. 101016174 and the Austrian Science Fund (FWF) with project number P35159-B supported J.K. The NIH NIAID Centers of Excellence for Influenza Research and Response (CEIRR) contract 75N93021C00014 as part of the SAVE program supported J.K., D.S., and A.N. A.N. was supported by the Gates Cambridge Trust.Funder: European Union’s Horizon 2020 research and innovation program under grant agreement No. 101016174 NIH NIAID Centers of Excellence for Influenza Research and Response (CEIRR) contract 75N93021C00014 as part of the SAVE programFunder: Gates Cambridge Trust; doi: https://doi.org/10.13039/501100005370Since emergence of the initial SARS-CoV-2 BA.1, BA.2 and BA.5 variants, Omicron has diversified substantially. Antigenic characterization of these new variants is important to analyze their potential immune escape from population immunity and implications for future vaccine composition. Here, we describe an antigenic map based on human single-exposure sera and live-virus isolates that includes a broad selection of recently emerged Omicron variants such as BA.2.75, BF.7, BQ, XBB and XBF variants. Recent Omicron variants clustered around BA.1 and BA.5 with some variants further extending the antigenic space. Based on this antigenic map we constructed antibody landscapes to describe neutralization profiles after booster immunization with bivalent mRNA vaccines based on ancestral virus and either BA.1 or BA.4/5. Immune escape of BA.2.75, BQ, XBB and XBF variants was also evident in bivalently boosted individuals, however, cross-neutralization was improved for those with hybrid immunity. Our results indicate that future vaccine updates are needed to induce cross-neutralizing antibodies against currently circulating variants
Characterizing SARS-CoV-2 neutralization profiles after bivalent boosting using antigenic cartography
Abstract Since emergence of the initial SARS-CoV-2 BA.1, BA.2 and BA.5 variants, Omicron has diversified substantially. Antigenic characterization of these new variants is important to analyze their potential immune escape from population immunity and implications for future vaccine composition. Here, we describe an antigenic map based on human single-exposure sera and live-virus isolates that includes a broad selection of recently emerged Omicron variants such as BA.2.75, BF.7, BQ, XBB and XBF variants. Recent Omicron variants clustered around BA.1 and BA.5 with some variants further extending the antigenic space. Based on this antigenic map we constructed antibody landscapes to describe neutralization profiles after booster immunization with bivalent mRNA vaccines based on ancestral virus and either BA.1 or BA.4/5. Immune escape of BA.2.75, BQ, XBB and XBF variants was also evident in bivalently boosted individuals, however, cross-neutralization was improved for those with hybrid immunity. Our results indicate that future vaccine updates are needed to induce cross-neutralizing antibodies against currently circulating variants
BA.2 and BA.5 omicron differ immunologically from both BA.1 omicron and pre-omicron variants.
Several studies have shown that SARS-CoV-2 BA.1 omicron is an immune escape variant. Meanwhile, however, omicron BA.2 and BA.5 became dominant in many countries and replaced BA.1. As both have several mutations compared to BA.1, we analyzed whether BA.2 and BA.5 show further immune escape relative to BA.1. Here, we characterized neutralization profiles against the BA.2 and BA.5 omicron sub-variants in plasma samples from individuals with different history of exposures to infection/vaccination and found that unvaccinated individuals after a single exposure to BA.2 had limited cross-neutralizing antibodies to pre-omicron variants and to BA.1. Consequently, our antigenic map including all Variants of Concern and BA.1, BA.2 and BA.5 omicron sub-variants, showed that all omicron sub-variants are distinct to pre-omicron variants, but that the three omicron variants are also antigenically distinct from each other. The antibody landscapes illustrate that cross-neutralizing antibodies against the current antigenic space, as described in our maps, are generated only after three or more exposures to antigenically close variants but also after two exposures to antigenically distant variants. Here, we describe the antigenic space inhabited by the relevant SARS-CoV-2 variants, the understanding of which will have important implications for further vaccine strain adaptations
Recommended from our members
Direct comparison of SARS-CoV-2 variant specific neutralizing antibodies in human and hamster sera
Acknowledgements: We thank Albert Falch and Verena Pittl for their excellent technical support. The NIH NIAID Centers of Excellence for Influenza Research and Response (CEIRR) contract 75N93021C00014 as part of the SAVE program supported JK, DJS, BLH, AN, SHW, and ST. AN was supported by the Gates Cambridge Trust. The European Union’s Horizon 2020 research and innovation program under grant agreement No. 101016174 and the Austrian Science Fund (FWF) with the project number P35159-B supported JK.Funder: Gates Cambridge Trust; doi: https://doi.org/10.13039/501100005370AbstractAntigenic characterization of newly emerging SARS-CoV-2 variants is important to assess their immune escape and judge the need for future vaccine updates. To bridge data obtained from animal sera with human sera, we analyzed neutralizing antibody titers in human and hamster single infection sera in a highly controlled setting using the same authentic virus neutralization assay performed in one laboratory. Using a Bayesian framework, we found that titer fold changes in hamster sera corresponded well to human sera and that hamster sera generally exhibited higher reactivity.</jats:p