24 research outputs found

    Spontaneous Decay in the Presence of Absorbing Media

    Get PDF
    After giving a summary of the basic-theoretical concept of quantization of the electromagnetic field in the presence of dispersing and absorbing (macroscopic) bodies, their effect on spontaneous decay of an excited atom is studied. Various configurations such as bulk material, planar half space media, spherical cavities, and microspheres are considered. In particular, the influence of material absorption on the local-field correction, the decay rate, the line shift, and the emission pattern are examined. Further, the interplay between radiative losses and losses due to material absorption is analyzed. Finally, the possibility of generating entangled states of two atoms coupled by a microsphere-assisted field is discussed.Comment: 32 pages, 15 eps figures, contribution to Recent Research Developments in Optics, to be published by Research Signpos

    Generation of long-living entanglement between two separate atoms

    Get PDF
    A scheme for non-conditional generation of long-living maximally entangled states between two spatially well separated atoms is proposed. In the scheme, Λ\Lambda-type atoms pass a resonator-like equipment of dispersing and absorbing macroscopic bodies giving rise to body-assisted electromagnetic field resonances of well-defined heights and widths. Strong atom-field coupling is combined with weak atom-field coupling to realize entanglement transfer from the dipole-allowed transitions to the dipole-forbidden transitions, thereby the entanglement being preserved when the atoms depart from the bodies and from each other. The theory is applied to the case of the atoms passing by a microsphere.Comment: 13 pages, 5 figure

    Efficiency of tunable band-gap structures for single-photon emission

    Full text link
    The efficiency of recently proposed single-photon emitting sources based on tunable planar band-gap structures is examined. The analysis is based on the study of the total and ``radiative'' decay rates, the expectation value of emitted radiation energy and its collimating cone. It is shown that the scheme operating in the frequency range near the defect resonance of a defect band-gap structure is more efficient than the one operating near the band edge of a perfect band-gap structure.Comment: 9 pages, 7 figure

    Casimir-Polder forces: A non-perturbative approach

    Full text link
    Within the frame of macroscopic QED in linear, causal media, we study the radiation force of Casimir-Polder type acting on an atom which is positioned near dispersing and absorbing magnetodielectric bodies and initially prepared in an arbitrary electronic state. It is shown that minimal and multipolar coupling lead to essentially the same lowest-order perturbative result for the force acting on an atom in an energy eigenstate. To go beyond perturbation theory, the calculations are based on the exact center-of-mass equation of motion. For a nondriven atom in the weak-coupling regime, the force as a function of time is a superposition of force components that are related to the electronic density-matrix elements at a chosen time. Even the force component associated with the ground state is not derivable from a potential in the ususal way, because of the position dependence of the atomic polarizability. Further, when the atom is initially prepared in a coherent superposition of energy eigenstates, then temporally oscillating force components are observed, which are due to the interaction of the atom with both electric and magnetic fields.Comment: 23 pages, 3 figures, additional misprints correcte

    Partitioning optical solitons for generating entangled light beams

    Get PDF
    It is shown that bipartition of optical solitons can be used to generate entangled light beams. The achievable amount of entanglement can be substantially larger for N-bound solitons N=2,3 than for the fundamental soliton (N=1). An analysis of the mode structure of the entangled beams shows that just N modes are essentially entangled. In particular, partitioning of the fundamental soliton effectively produces 2-mode squeezed light.Comment: 5 pages, 3 PS figure

    Nonclassical correlations in damped quantum solitons

    Get PDF
    Using cumulant expansion in Gaussian approximation, the internal quantum statistics of damped soliton-like pulses in Kerr media are studied numerically, considering both narrow and finite bandwidth spectral pulse components. It is shown that the sub-Poissonian statistics can be enhanced, under certain circumstances, by absorption, which damps out some destructive interferences. Further, it is shown that both the photon-number correlation and the correlation of the photon-number variance between different pulse components can be highly nonclassical even for an absorbing fiber. Optimum frequency windows are determined in order to realize strong nonclassical behavior, which offers novel possibilities of using solitons in optical fibers as a source of nonclassically correlated light beams.Comment: 15 pages, 11 PS figures (color

    Three-dimensional quantization of the electromagnetic field in dispersive and absorbing inhomogeneous dielectrics

    Full text link
    A quantization scheme for the phenomenological Maxwell theory of the full electromagnetic field in an inhomogeneous three-dimensional, dispersive and absorbing dielectric medium is developed. The classical Maxwell equations with spatially varying and Kramers-Kronig consistent permittivity are regarded as operator-valued field equations, introducing additional current- and charge-density operator fields in order to take into account the noise associated with the dissipation in the medium. It is shown that the equal-time commutation relations between the fundamental electromagnetic fields E^\hat E and B^\hat B and the potentials A^\hat A and ϕ^\hat \phi in the Coulomb gauge can be expressed in terms of the Green tensor of the classical problem. From the Green tensors for bulk material and an inhomogeneous medium consisting of two bulk dielectrics with a common planar interface it is explicitly proven that the well-known equal-time commutation relations of QED are preserved
    corecore