4 research outputs found
The formation and fate of internal waves in the South China Sea
Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis1, sediment and pollutant transport2 and acoustic transmission3; they also pose hazards for man-made structures in the ocean4. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking5, making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects6,7. For over a decade, studies8-11 have targeted the South China Sea, where the oceans' most powerful known internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their mechanism of generation, variability and energy budget, however, owing to the lack of in situ data from the Luzon Strait, where extreme flow conditions make measurements difficult. Here we use new observations and numerical models to (1) show that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, (2) reveal the existence of >200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels >10,000 times that in the open ocean, (3) determine that the Kuroshio western boundary current noticeably refracts the internal wave field emanating from the Luzon Strait, and (4) demonstrate a factor-of-two agreement between modelled and observed energy fluxes, which allows us to produce an observationally supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions
CLIMATE PROCESS TEAM ON INTERNAL WAVE–DRIVEN OCEAN MIXING
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152465/1/bams_2017_mackinnonetal_IGWMixing.pdfDescription of bams_2017_mackinnonetal_IGWMixing.pdf : Main articl
On the structure and propagation of internal solitary waves generated at the Mascarene Plateau in the Indian Ocean
The Mascarene Plateau in the Western Indian Ocean is identified as a new internal solitary wave hotspot. Satellite SAR images show that powerful internal waves radiate both to the West and East from a central sill near 12.5° S, 61° E between the Saya de Malha and Nazareth Banks. To first order, the waves appear in tidally generated packets on both sides of the sill, and those on the western side have crest-lengths in excess of 350 km, amongst the longest yet recorded anywhere in the world’s oceans. The propagation characteristics of these internal waves are well described by first mode linear waves interacting with background shear taken from the westward-flowing South Equatorial Current (SEC), a large part of which flows through the sill in question. Analysis of the timings and locations of the packets indicates that both the westward- and eastward- travelling waves are generated from the western side of the sill at the predicted time of maximum tidal flow to the West. The linear generation mechanism is therefore proposed as the splitting of a large lee wave that forms on the western side of the sill, in a similar manner to that already identified for the shelf break generation of internal waves in the northern Bay of Biscay. While lee waves should form on either side of the sill in an oscillatory tidal flow, that on the western side would be expected to be much larger than that on the eastern side because of a superposition of the tidal flow and the steady westward flow of the SEC. The existence of a large lee wave at the right time in the tidal cycle is then finally confirmed by direct observations. Our study also confirms the existence of second mode internal waves that form on the western side of the sill and travel across the sill towards the East