82 research outputs found

    Obesity promotes 7,12-dimethylbenz(a)anthracene-induced mammary tumor development in female zucker rats

    Get PDF
    INTRODUCTION: High body mass index has been associated with increased risk for various cancers, including breast cancer. Here we describe studies using 7,12-dimethylbenz(a)anthracene (DMBA) to investigate the role of obesity in DMBA-induced mammary tumor susceptibility in the female Zucker rat (fa/fa), which is the most widely used rat model of genetic obesity. METHOD: Fifty-day-old female obese (n = 25) and lean (n = 28) Zucker rats were orally gavaged with 65 mg/kg DMBA. Rats were weighed and palpated twice weekly for detection of mammary tumors. Rats were killed 139 days after DMBA treatment. RESULTS: The first mammary tumor was detected in the obese group at 49 days after DMBA treatment, as compared with 86 days in the lean group (P < 0.001). The median tumor-free time was significantly lower in the obese group (P < 0.001). Using the days after DMBA treatment at which 25% of the rats had developed mammary tumors as the marker of tumor latency, the obese group had a significantly shorter latency period (66 days) than did the lean group (118 days). At the end of the study, obese rats had developed a significantly (P < 0.001) greater mammary tumor incidence (68% versus 32%) compared with the lean group. The tumor histology of the mammary tumors revealed that obesity was associated with a significant (P < 0.05) increase in the number of rats with at least one invasive ductal and lobular carcinoma compared with lean rats. CONCLUSION: Our results indicate that obesity increases the susceptibility of female Zucker rats to DMBA-induced mammary tumors, further supporting the hypothesis that obesity and some of its mediators play a significant role in carcinogenesis

    Leptin and leptin receptor polymorphisms are associated with increased risk and poor prognosis of breast carcinoma

    Get PDF
    BACKGROUND: Leptin (LEP) has been consistently associated with angiogenesis and tumor growth. Leptin exerts its physiological action through its specific receptor (LEPR). We have investigated whether genetic variations in LEP and LEPR have implications for susceptibility to and prognosis in breast carcinoma. METHODS: We used the polymerase chain reaction and restriction enzyme digestion to characterize the variation of the LEP and LEPR genes in 308 unrelated Tunisian patients with breast carcinoma and 222 healthy control subjects. Associations of the clinicopathologic parameters and these genetic markers with the rates of the breast carcinoma-specific overall survival (OVS) and the disease free survival (DFS) were assessed using univariate and multivariate analyses. RESULTS: A significantly increased risk of breast carcinoma was associated with heterozygous LEP (-2548) GA (OR = 1.45; P = 0.04) and homozygous LEP (-2548) AA (OR = 3.17; P = 0.001) variants. A highly significant association was found between the heterozygous LEPR 223QR genotype (OR = 1.68; P = 0.007) or homozygous LEPR 223RR genotype (OR = 2.26; P = 0.001) and breast carcinoma. Moreover, the presence of the LEP (-2548) A allele showed a significant association with decreased disease-free survival in breast carcinoma patients, and the presence of the LEPR 223R allele showed a significant association with decreased overall survival. CONCLUSION: Our results indicated that the polymorphisms in LEP and LEPR genes are associated with increased breast cancer risk as well as disease progress, supporting our hypothesis for leptin involvement in cancer pathogenesis

    Metabolic and Neuropsychiatric Effects of Calorie Restriction and Sirtuins

    No full text
    Most living organisms, including humans, age. Over time the ability to do physical and intellectual work deteriorates, and susceptibility to infectious, metabolic, and neurodegenerative diseases increases, which leads to general fitness decline and ultimately to death. Work in model organisms has demonstrated that genetic and environmental manipulations can prevent numerous age-associated diseases, improve health at advanced age, and increase life span. Calorie restriction (CR) (consumption of a diet with fewer calories but containing all the essential nutrients) is the most robust manipulation, genetic or environmental, to extend longevity and improve health parameters in laboratory animals. However, outside of the protected laboratory environment, the effects of CR are much less certain. Understanding the molecular mechanisms of CR may lead to the development of novel therapies to combat diseases of aging and to improve the quality of life. Sirtuins, a family of NAD+-dependent enzymes, mediate a number of metabolic and behavioral responses to CR and are intriguing targets for pharmaceutical interventions. We review the molecular understanding of CR; the role of sirtuins in CR; and the effects of sirtuins on physiology, mood, and behavior.Paul F. Glenn FoundationNational Institutes of Health (U.S.
    corecore