39 research outputs found

    The concomitant use of lapatinib and paracetamol - the risk of interaction

    Get PDF
    Lapatinib is a tyrosine kinase inhibitor used for the treatment of breast cancer. Paracetamol is an analgesic commonly applied to patients with mild or moderate pain and fever. Cancer patients are polymedicated, which involves high risk of drug interactions during therapy. The aimof the study was to assess the interaction between lapatinib and paracetamol in rats. The rats were divided into three groups of eight animals in each. One group received lapatinib + paracetamol (IL+PA), another group received lapatinib (IIL), whereas the last group received paracetamol (IIIPA). A single dose of lapatinib (100 mg/kg b.w.) and paracetamol (100 mg/ kg b.w.) was administered orally. Plasma concentrations of lapatinib, paracetamol and its metabolites – glucuronide and sulphate, were measured with the validated HPLC-MS/MS method and HPLC-UV method, respectively. The pharmacokinetic parameters of both drugs were calculated using non-compartmental methods. The co-administration of lapatinib and paracetamol increased the area under the plasma concentration-time curve (AUC) and the maximum concentration (Cmax) of lapatinib by 239.6% (p = 0.0030) and 184% (p = 0.0011), respectively. Lapatinib decreased the paracetamol AUC0-∞ by 48.8% and Cmax by 55.7%. In the IL+PA group the Cmax of paracetamol glucuronide was reduced, whereas the Cmax of paracetamol sulphate was higher than in the IIIPA group. Paracetamol significantly affected the enhanced plasma exposure of lapatinib. Additionally, lapatinib reduced the concentrations of paracetamol. The co-administration of lapatinib decreased the paracetamol glucuronidation but increased the sulphation. The findings of this study may be of clinical relevance to patients requiring analgesic therapy

    Development of an LC-MS Targeted Metabolomics Methodology to Study Proline Metabolism in Mammalian Cell Cultures

    No full text
    A growing interest in metabolomics studies of cultured cells requires development not only untargeted methods capable of fingerprinting the complete metabolite profile but also targeted methods enabling the precise and accurate determination of a selected group of metabolites. Proline metabolism affects many crucial processes at the cellular level, including collagen biosynthesis, redox balance, energetic processes as well as intracellular signaling. The study aimed to develop a robust and easy-to-use targeted metabolomics method for the determination of the intracellular level of proline and the other two amino acids closely related to proline metabolism: glutamic acid and arginine. The method employs hydrophilic interaction liquid chromatography followed by high-resolution, accurate-mass mass spectrometry for reliable detection and quantification of the target metabolites in cell lysates. The sample preparation consisted of quenching by the addition of ice-cold methanol and subsequent cell scraping into a quenching solution. The method validation showed acceptable linearity (r > 0.995), precision (%RSD < 15%), and accuracy (88.5–108.5%). Pilot research using HaCaT spontaneously immortalized human keratinocytes in a model for wound healing was performed, indicating the usefulness of the method in studies of disturbances in proline metabolism. The developed method addresses the need to determine the intracellular concentration of three key amino acids and can be used routinely in targeted mammalian cell culture metabolomics research

    Expression of abscisic and gibberellic acid signalling factors in Fagus sylvatica L. seeds during dormancy breaking and germination

    No full text
    European beech seeds are characterised by deep physiological dormancy and to germinate, they require several weeks of stratification at 3°C. Seed dormancy is under hormonal regulation, but the de- tails of how hormones regulate deep dormancy in trees remain not yet well elucidated. We hypothesised that the mechanism of seed dormancy breaking is differentially regulated according to depth of dormancy. Expression of ABI5 and 14-3-3, members of the abscisic acid pathway, and RGL2, a member of gibberel- lic acid pathways, were examined at the protein and mRNA levels during dormancy alleviation of beech seeds. Unlike in non-deep dormant seeds, ABI5, 14-3-3 and RGL2 were present during nearly all periods of cold stratification in beech seeds, but during dormancy breaking and germination these proteins nearly disappeared. Relative abundances of ABI5 and 14-3-3 transcripts were the highest in dormant dry seeds, and during stratification it decreased gradually. We suppose that during stratification, de novo translation of proteins on the basis of deposited mRNA occurred. On the base of our research we can conclude that the seed dormancy breaking mechanism differs according to seed’s dormancy dept

    Application of Metabolomic Tools for Studying Low Molecular-Weight Fraction of Animal Venoms and Poisons

    No full text
    Both venoms and poisonous secretions are complex mixtures that assist in defense, predation, communication, and competition in the animal world. They consist of variable bioactive molecules, such as proteins, peptides, salts and also metabolites. Metabolomics opens up new perspectives for the study of venoms and poisons as it gives an opportunity to investigate their previously unexplored low molecular-weight components. The aim of this article is to summarize the available literature where metabolomic technologies were used for examining the composition of animal venoms and poisons. The paper discusses only the low molecular-weight components of venoms and poisons collected from snakes, spiders, scorpions, toads, frogs, and ants. An overview is given of the analytical strategies used in the analysis of the metabolic content of the samples. We paid special attention to the classes of compounds identified in various venoms and poisons and potential applications of the small molecules (especially bufadienolides) discovered. The issues that should be more effectively addressed in the studies of animal venoms and poisons include challenges related to sample collection and preparation, species-related chemical diversity of compounds building the metabolome and a need of an online database that would enhance identification of small molecule components of these secretions

    Multielemental Analysis of Bee Pollen, Propolis, and Royal Jelly Collected in West-Central Poland

    No full text
    Beehive products possess nutritional value and health-promoting properties and are recommended as so-called “superfoods”. However, because of their natural origin, they may contain relevant elemental contaminants. Therefore, to assess the quality of bee products, we examined concentrations of a broad range of 24 selected elements in propolis, bee pollen, and royal jelly. The quantitative analyses were performed with inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES) techniques. The results of our research indicate that bee products contain essential macronutrients (i.e., K, P, and S) and micronutrients (i.e., Zn and Fe) in concentrations depending on the products’ type. However, the presence of toxic heavy metals makes it necessary to test the quality of bee products before using them as dietary supplements. Bearing in mind that bee products are highly heterogenous and, depending on the environmental factors, differ in their elemental content, it is necessary to develop standards regulating the acceptable levels of inorganic pollutants. Furthermore, since bees and their products are considered to be an effective biomonitoring tool, our results may reflect the environment’s condition in west-central Poland, affecting the health and well-being of both humans and bees

    Identification of Serum Peptidome Signatures of Non-Small Cell Lung Cancer

    No full text
    Due to high mortality rates of lung cancer, there is a need for identification of new, clinically useful markers, which improve detection of this tumor in early stage of disease. In the current study, serum peptide profiling was evaluated as a diagnostic tool for non-small cell lung cancer patients. The combination of the ZipTip technology with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for the analysis of peptide pattern of cancer patients (n = 153) and control subjects (n = 63) was presented for the first time. Based on the observed significant differences between cancer patients and control subjects, the classification model was created, which allowed for accurate group discrimination. The model turned out to be robust enough to discriminate a new validation set of samples with satisfactory sensitivity and specificity. Two peptides from the diagnostic pattern for non-small cell lung cancer (NSCLC) were identified as fragments of C3 and fibrinogen α chain. Since ELISA test did not confirm significant differences in the expression of complement component C3, further study will involve a quantitative approach to prove clinical utility of the other proteins from the proposed multi-peptide cancer signature

    Usefulness of Amino Acid Profiling in Ovarian Cancer Screening with Special Emphasis on Their Role in Cancerogenesis

    No full text
    The aim of this study was to quantitate 42 serum-free amino acids, propose the biochemical explanation of their role in tumor development, and identify new ovarian cancer (OC) biomarkers for potential use in OC screening. The additional value of this work is the schematic presentation of the interrelationship between metabolites which were identified as significant for OC development and progression. The liquid chromatography-tandem mass spectrometry technique using highly-selective multiple reaction monitoring mode and labeled internal standards for each analyzed compound was applied. Performed statistical analyses showed that amino acids are potentially useful as OC biomarkers, especially as variables in multi-marker models. For the distinguishing metabolites the following metabolic pathways involved in cancer growth and development were proposed: histidine metabolism; tryptophan metabolism; arginine biosynthesis; arginine and proline metabolism; and alanine, aspartate and glutamine metabolism. The presented research identifies histidine and citrulline as potential new OC biomarkers. Furthermore, it provides evidence that amino acids are involved in metabolic pathways related to tumor growth and play an important role in cancerogenesis

    A Combined Metabolomic and Proteomic Analysis of Gestational Diabetes Mellitus

    No full text
    The aim of this pilot study was to apply a novel combined metabolomic and proteomic approach in analysis of gestational diabetes mellitus. The investigation was performed with plasma samples derived from pregnant women with diagnosed gestational diabetes mellitus (n = 18) and a matched control group (n = 13). The mass spectrometry-based analyses allowed to determine 42 free amino acids and low molecular-weight peptide profiles. Different expressions of several peptides and altered amino acid profiles were observed in the analyzed groups. The combination of proteomic and metabolomic data allowed obtaining the model with a high discriminatory power, where amino acids ethanolamine, l-citrulline, l-asparagine, and peptide ions with m/z 1488.59; 4111.89 and 2913.15 had the highest contribution to the model. The sensitivity (94.44%) and specificity (84.62%), as well as the total group membership classification value (90.32%) calculated from the post hoc classification matrix of a joint model were the highest when compared with a single analysis of either amino acid levels or peptide ion intensities. The obtained results indicated a high potential of integration of proteomic and metabolomics analysis regardless the sample size. This promising approach together with clinical evaluation of the subjects can also be used in the study of other diseases
    corecore