15 research outputs found

    Heart-Kidney Interaction: Epidemiology of Cardiorenal Syndromes

    Get PDF
    Cardiac and kidney diseases are common, increasingly encountered, and often coexist. Recently, the Acute Dialysis Quality Initiative (ADQI) Working Group convened a consensus conference to develop a classification scheme for the CRS and for five discrete subtypes. These CRS subtypes likely share pathophysiologic mechanisms, however, also have distinguishing clinical features, in terms of precipitating events, risk identification, natural history, and outcomes. Knowledge of the epidemiology of heart-kidney interaction stratified by the proposed CRS subtypes is increasingly important for understanding the overall burden of disease for each CRS subtype, along with associated morbidity, mortality, and health resource utilization. Likewise, an understanding of the epidemiology of CRS is necessary for characterizing whether there exists important knowledge gaps and to aid in the design of clinical studies. This paper will provide a summary of the epidemiology of the cardiorenal syndrome and its subtypes

    Recognition of other species' aerial alarm calls: speaking the same language or learning another?

    No full text
    Alarm calls given by other species potentially provide a network of information about danger, but little is known about the role of acoustic similarity compared with learning in recognition of heterospecific calls. In particular, the aerial ‘hawk’ alarm calls of passerines provide a textbook example of signal design because many species have converged on a design that thwarts eavesdropping by hawks, and call similarity might therefore allow recognition. We measured the response of fairy-wrens (Malurus cyaneus) to playback of acoustically similar scrubwren (Sericornis frontalis) aerial alarm calls. First, if call similarity prompts escape independent of learning, then fairy-wrens should flee to playback of scrubwren calls outside their geographical range. However, fairy-wrens fled only in sympatry. Second, if call similarity is necessary for learning heterospecific calls, then fairy-wrens should not respond to sympatric species with different calls. We found, on the contrary, that fairy-wrens fled to the very different aerial alarm calls of a honeyeater (Phylidonyris novaehollandiae). Furthermore, response to the honeyeater depended on the specific structure of the call, not acoustic similarity. Overall, call similarity was neither sufficient nor necessary for interspecific recognition, implying learning is essential in the complex task of sifting the acoustic world for cues about danger

    Ambient noise and the design of begging signals

    No full text
    The apparent extravagance of begging displays is usually attributed to selection for features, such as loud calls, that make the signal costly and hence reliable. An alternative explanation, however, is that these design features are needed for effective signal transmission and reception. Here, we test the latter hypothesis by examining how the begging calls of tree swallow (Tachycineta bicolor) nestlings and the response to these calls by parents are affected by ambient noise. In a field study, we found that call length, amplitude and frequency range all increased with increasing noise levels at nests. In the laboratory, however, only call amplitude increased in response to the playback of noise to nestlings. In field playbacks to parents, similar levels of noise abolished parental preferences for higher call rates, but the preference was restored when call amplitude was increased to the level that nestlings had used in the laboratory study. Our results show that nestling birds, like other acoustic signallers, consistently increase call amplitude in response to ambient noise and this response appears to enhance discrimination by receivers. Thus, selection for signal efficacy may explain some of the seemingly extravagant features of begging displays

    Production and perception of communicatory signals in a noisy environment

    Get PDF
    Many animals communicate in situations that make it difficult to discriminate a species' signals from those of others. Consequently, coexisting species usually have signals that differ by more than the minimum required to prevent overlap in acoustic features. These gaps between signals might facilitate detection and discrimination of degraded signals in noisy natural conditions. If so, perception of signals should have broader scope than production. We investigated this possibility by studying song production and perception of two species of birds in an especially noisy environment, the Amazonian dawn chorus. With software developed for this study, we digitally synthesized songs of two species, as well as intermediate versions of their songs. Experimental playbacks of these synthesized songs to individuals of both species confirmed that perception (as indicated by responses) was broader than production of songs. We propose that broader perception than production of song promotes communication in noisy situations and limits the similarity between signals of coexisting species

    Weiterführende Aspekte und Methoden

    No full text
    corecore