3,259 research outputs found

    Acoustic suppression of the coffee-ring effect

    Get PDF
    We study the influence of acoustic fields on the evaporative self-assembly of solute particles suspended inside sessile droplets of complex fluids. The self-assembly process often results in an undesirable ring-like heterogeneous residue, a phenomenon known as the coffee-ring effect. Here we show that this ring-like self-assembly can be controlled acoustically to form homogeneous disc-like or concentrated spot-like residues. The principle of our method lies in the formation of dynamic patterns of particles in acoustically excited droplets, which inhibits the evaporation-driven convective transport of particles towards the contact line. We elucidate the mechanisms of this pattern formation and also obtain conditions for the suppression of the coffee-ring effect. Our results provide a more general solution to suppress the coffee-ring effect without any physiochemical modification of the fluids, the particles or the surface, thus potentially useful in a broad range of industrial and analytical applications that require homogenous solute depositions

    A Comparison of the Physiological Responses of Brain-Damaged Alcoholics, Nonbrain-Damaged Alcoholics, and Social Drinkers to the Smell of Alcohol.

    Get PDF
    This study reviews the relapse prevention and neuropsychological literature relevant to alcoholism. The argument was made that impaired neuropsychological functioning may be an important determinant of relapse. Specifically, neuropsychological impairment was expected to affect the manner in which individuals respond to conditioned alcohol cues so as to increase their attention to the cues and increase their desire to drink, a process which might adversely affect recovery. In order to study the impact of conditioned alcohol cues, subjective, objective, and psychophysiological responses of brain-damaged alcoholics, nonbrain-damaged alcoholics, and nonbrain-damaged social drinkers were compared on their responses to alcohol and to water. The results revealed that the presence of neuropsychological deficits was differentially associated with how alcoholics responded to the two types of stimuli. It was suggested that alcoholics with neuropsychological deficits exhibited some sort of selective attentional process for alcohol that differentially reduced the attention paid to the competing stimuli. A model was proposed to illustrate this effect. It was concluded that the study has important research and clinical implications. Most importantly, alcoholics should be assessed for brain damage and any attentional deficits be rehabilitated in much the same manner as brain injured patients

    Isochoric, isobaric and ultrafast conductivities of aluminum, lithium and carbon in the warm dense matter (WDM) regime

    Full text link
    We study the conductivities σ\sigma of (i) the equilibrium isochoric state (σis\sigma_{\rm is}), (ii) the equilibrium isobaric state (σib\sigma_{\rm ib}), and also the (iii) non-equilibrium ultrafast matter (UFM) state (σuf\sigma_{\rm uf}) with the ion temperature TiT_i less than the the electron temperature TeT_e. Aluminum, lithium and carbon are considered, being increasingly complex warm dense matter (WDM) systems, with carbon having transient covalent bonds. First-principles calculations, i.e., neutral-pseudoatom (NPA) calculations and density-functional theory (DFT) with molecular-dynamics (MD) simulations, are compared where possible with experimental data to characterize σic,σib\sigma_{\rm ic}, \sigma_{\rm ib} and σuf\sigma_{\rm uf}. The NPA σib\sigma_{\rm ib} are closest to the available experimental data when compared to results from DFT+MD, where simulations of about 64-125 atoms are typically used. The published conductivities for Li are reviewed and the value at a temperature of 4.5 eV is examined using supporting X-ray Thomson scattering calculations. A physical picture of the variations of σ\sigma with temperature and density applicable to these materials is given. The insensitivity of σ\sigma to TeT_e below 10 eV for carbon, compared to Al and Li, is clarified.Comment: 10 figure

    Two-temperature pair potentials and phonon spectra for simple metals in the warm dense matter regime

    Full text link
    We develop ion-ion pair potentials for Al, Na and K for densities and temperatures relevant to the warm-dense-matter (WDM) regime. Furthermore, we emphasize non-equilibrium states where the ion temperature TiT_i differs from the electron temperature TeT_e. This work focuses mainly on ultra-fast laser-metal interactions where the energy of the laser is almost exclusively transferred to the electron sub-system over femtosecond time scales. This results in a two-temperature system with Te>TiT_e>T_i and with the ions still at the initial room temperature Ti=TrT_i=T_r. First-principles calculations, such as density functional theory (DFT) or quantum Monte Carlo, are as yet not fully feasible for WDM conditions due to lack of finite-TT features, e.g. pseudopotentials, and extensive CPU time requirements. Simpler methods are needed to study these highly complex systems. We propose to use two-temperature pair potentials Uii(r,Ti,Te)U_{ii}(r, T_i,T_e) constructed from linear-response theory using the non-linear electron density n(r)n(\mathbf{r}) obtained from finite-TT DFT with a single ion immersed in the appropriate electron fluid. We compute equilibrium phonon spectra at TrT_r which are found to be in very good agreement with experiments. This gives credibility to our non-equilibrium phonon dispersion relations which are important in determining thermophysical properties, stability, energy-relaxation mechanisms and transport coefficients.Comment: International Conf. on Strongly-Coupled Coulombo Systems (SCCS) 201

    Adjustment of the Elderly in Retirement Homes in Eastern South Dakota

    Get PDF
    In South Dakota, particularly, growing numbers of older citizens give cause for increasing concern with their problems. While the total population of South Dakota declined by 5.8% between 1930 and 1950, during the same period the number of persons 65 years old and older increased by 49.8%.3 By 1958, 10.1% of the state\u27s total population was 65 years old and older, compared with the national figure of 8.8%. A consideration of the preceding discussion makes understandable the increasing interest in life in the later years. This increased interest has stimulated research, concerned not only with problems like medical care, housing, and finances, but concerned also with more subtle problems involving the maintenance of the older person as an integrated, well-functioning personality

    Simulation Subsumption or Déjà vu on the Web

    Get PDF
    Simulation unification is a special kind of unification adapted to retrieving semi-structured data on the Web. This article introduces simulation subsumption, or containment, that is, query subsumption under simulation unification. Simulation subsumption is crucial in general for query optimization, in particular for optimizing pattern-based search engines, and for the termination of recursive rule-based web languages such as the XML and RDF query language Xcerpt. This paper first motivates and formalizes simulation subsumption. Then, it establishes decidability of simulation subsumption for advanced query patterns featuring descendant constructs, regular expressions, negative subterms (or subterm exclusions), and multiple variable occurrences. Finally, we show that subsumption between two query terms can be decided in O(n!n) where n is the sum of the sizes of both query terms

    Modelling the atomic structure of very high-density amorphous ice

    Full text link
    The structure of very high-density amorphous (VHDA) ice has been modelled by positionally disordering three crystalline phases, namely ice IV, VI and XII. These phases were chosen because only they are stable or metastable in the region of the ice phase diagram where VHDA ice is formed, and their densities are comparable to that of VHDA ice. An excellent fit to the medium range of the experimentally observed pair-correlation function g(r) of VHDA ice was obtained by introducing disorder into the positions of the H2O molecules, as well as small amounts of molecular rotational disorder, disorder in the O--H bond lengths and disorder in the H--O--H bond angles. The low-k behaviour of the experimental structure factor, S(k), is also very well reproduced by this disordered-crystal model. The fraction of each phase present in the best-fit disordered model is very close to that observed in the probable crystallization products of VHDA ice. In particular, only negligible amounts of ice IV are predicted, in accordance with experimental observation.Comment: 4 pages, 3 figures, 1 table, v2: changes made in response to referees' comments, the justification for using certain ice phases is improved, and ice IV is now disordered as wel
    • …
    corecore