50 research outputs found

    Arthrofibrosis after TKA - Influence factors on the absolute flexion and gain in flexion after manipulation under anaesthesia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stiffness with decreased range of motion (ROM) has been described as a frustrating complication after TKA. If all methods of physiotherapeutic treatment have been exhausted trying to develop ROM, manipulation under anaesthesia (MUA) can be discussed. The aim of the present study was to show the effect of MUA and to determine the influence of BMI, number of previous surgical procedures, pre-MUA ROM and timing of MUA for the results after MUA in regard to absolute flexion and gain in flexion.</p> <p>Methods</p> <p>858 patients underwent TKA at our institution between 2004 and 2009. 39 of these patients underwent MUA because of postoperative knee stiffness. The data were retrospective analysed for the influence of BMI, pre-MUA flexion (</≥ 70°), timing of MUA (>/≤ 30 days after TKA) and number of previous surgery on the results after MUA (absolute Flexion/gain in flexion).</p> <p>Results</p> <p>The prevalence for stiffness after TKA was 4.54%. There was a statistically significant improvement in flexion not only directly after MUA but also 6 weeks after MUA. Patients with two or more previous operations before TKA showed statistically significant worse results six weeks after MUA in absolute flexion and gain in flexion</p> <p>(p = 0.039) than patients with one or two previous operations. No statistical significance in absolute flexion (p = 0.655) and gain in flexion (p = 0.328) after MUA between "early" and "late" was detected. The stiffer knees with a flexion below 70° showed significantly worse results (p = 0.044) in absolute flexion six weeks after MUA, but they also had statistical statistically better results with regard to gain in flexion (p ≤ 0.001).</p> <p>Conclusion</p> <p>MUA is a good instrument for improving ROM after TKA. The time between TKA and MUA seems less important, so different types of physiotherapeutic treatment could be tried before the procedure is started. MUA in patients with many previous operations and a flexion of less than 70° before MUA is not as effective as in other patients, but they also benefit from MUA.</p

    Tumour stromal cells derived from paediatric malignancies display MSC-like properties and impair NK cell cytotoxicity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumour growth and metastatic infiltration are favoured by several components of the tumour microenvironment. Bone marrow-derived multipotent mesenchymal stromal cells (MSC) are known to contribute to the tumour stroma. When isolated from healthy bone marrow, MSC exert potent antiproliferative effects on immune effector cells. Due to phenotypic and morphological similarities of MSC and tumour stromal cells (TStrC), we speculated that immunotherapeutic approaches may be hampered if TStrC may still exhibit immunomodulatory properties of MSC.</p> <p>Methods</p> <p>In order to compare immunomodulatory properties of MSC and tumour stromal cells (TStrC), we established and analyzed TStrC cultures from eleven paediatric tumours and MSC preparations from bone marrow aspirates. Immunophenotyping, proliferation assays and NK cell cytotoxicity assays were employed to address the issue.</p> <p>Results</p> <p>While TStrC differed from MSC in terms of plasticity, they shared surface expression of CD105, CD73 and other markers used for MSC characterization. Furthermore, TStrC displayed a strong antiproliferative effect on peripheral blood mononuclear cells (PBMC) in coculture experiments similar to MSC. NK cell cytotoxicity was significantly impaired after co-culture with TStrC and expression of the activating NK cell receptors NKp44 and NKp46 was reduced.</p> <p>Conclusions</p> <p>Our data show that TStrC and MSC share important phenotypic and functional characteristics. The inhibitory effect of TStrC on PBMC and especially on NK cells may facilitate the immune evasion of paediatric tumours.</p

    A surprising cause of paresis following scoliosis correction

    No full text
    corecore