36 research outputs found

    Coagulopathy in Zellweger spectrum disorders: a role for vitamin K

    Get PDF
    Introduction: Zellweger spectrum disorders (ZSDs) are caused by an impairment of peroxisome biogenesis, resulting in multiple metabolic abnormalities. This leads to a range of symptoms, including hepatic dysfunction and coagulopathy. This study evaluated the incidence and severity of coagulopathy and the effect of vitamin K supplementation orally and IV in ZSD. Methods: Data were retrospectively retrieved from the medical records of 30 ZSD patients to study coagulopathy and the effect of vitamin K orally on proteins induced by vitamin K absence (PIVKA-II) levels. Five patients from the cohort with a prolonged prothrombin time, low factor VII, and elevated PIVKA-II levels received 10 mg of vitamin K IV. Laboratory results, including thrombin generation, at baseline and 72 h after vitamin K administration were examined. Results: In the retrospective cohort, four patients (13.3%) experienced intracranial bleedings and 14 (46.7%) reported minor bleeding. No thrombotic events occurred. PIVKA-II levels decreased 38% after start of vitamin K therapy orally. In the five patients with a coagulopathy, despite treatment with oral administration of vitamin K, vitamin K IV caused an additional decrease (23%) of PIVKA-II levels and increased thrombin generation. Conclusion: Bleeding complications frequently occur in ZSD patients due to liver disease and vitamin K deficiency. Vitamin K deficiency is partly corrected by vitamin K supplementation orally, and vitamin K administered IV additionally improves vitamin K status, as shown by further decrease of PIVKA-II and improved thrombin generation

    Allelic Expression Imbalance Promoting a Mutant PEX6 Allele Causes Zellweger Spectrum Disorder

    Get PDF
    Zellweger spectrum disorders (ZSDs) are autosomal-recessive disorders that are caused by defects in peroxisome biogenesis due to bi-allelic mutations in any of 13 different PEX genes. Here, we identified seven unrelated individuals affected with an apparent dominant ZSD in whom a heterozygous mutant PEX6 allele (c.2578C&gt;T [p.Arg860Trp]) was overrepresented due to allelic expression imbalance (AEI). We demonstrated that AEI of PEX6 is a common phenomenon and is correlated with heterozygosity for a frequent variant in the 3' untranslated region (UTR) of the mutant allele, which disrupts the most distal of two polyadenylation sites. Asymptomatic parents, who were heterozygous for PEX c.2578C&gt;T, did not show AEI and were homozygous for the 3' UTR variant. Overexpression models confirmed that the overrepresentation of the pathogenic PEX6 c.2578T variant compared to wild-type PEX6 c.2578C results in a peroxisome biogenesis defect and thus constitutes the cause of disease in the affected individuals. AEI promoting the overrepresentation of a mutant allele might also play a role in other autosomal-recessive disorders, in which only one heterozygous pathogenic variant is identified.</p

    Neurological phenotype of adenosine deaminase 2 deficient patients: a cohort study

    Get PDF
    Background and purpose: Patients with adenosine deaminase 2 (ADA2) deficiency can present with various neurological manifestations due to vasculopathies and autoinflammation. These include ischaemic and hemorrhagic stroke, but less clearly defined neurological symptoms have also been reported. Methods: In this cohort study, patients with confirmed ADA2 deficiency from seven university hospitals in the Netherlands were included. The frequency and recurrence rates of neurological manifestations before and after initiation of tumor necrosis factor α (TNF-α) inhibiting therapy were analyzed. Results: Twenty-nine patients were included with a median age at presentation of 5 years (interquartile range 1–17). Neurological manifestations occurred in 19/29 (66%) patients and were the presenting symptom in 9/29 (31%) patients. Transient ischaemic attack (TIA)/ischaemic stroke occurred in 12/29 (41%) patients and was the presenting symptom in 8/29 (28%) patients. In total, 25 TIAs/ischaemic strokes occurred in 12 patients, one after initiation of TNF-α inhibiting therapy and one whilst switching between TNF-α inhibitors. None was large-vessel occlusion stroke. Two hemorrhagic strokes occurred: one aneurysmatic subarachnoid hemorrhage and one spontaneous intracerebral hemorrhage. Most neurological symptoms, including cranial nerve deficits, vertigo, ataxia and seizures, were caused by TIAs/ischaemic strokes and seldom recurred after initiation of TNF-α inhibiting therapy. Conclusions: Neurological manifestations, especially TIA/ischaemic stroke, are common in patients with ADA2 deficiency and frequently are the presenting symptom. Because it is a treatable cause of young stroke, for which antiplatelet and anticoagulant therapy are considered contraindicated, awareness amongst neurologists and pediatricians is important. Screening for ADA2 deficiency in young patients with small-vessel ischaemic stroke without an identified cause should be considered

    Clinical Symptoms, Laboratory Parameters and Long-Term Follow-up in a National DADA2 Cohort

    Get PDF
    Deficiency of adenosine deaminase-2 (DADA2) is an autosomal recessive autoinflammatory disease with an extremely variable disease presentation. This paper provides a comprehensive overview of the Dutch DADA2 cohort. We performed a retrospective cohort study in 29 ADA2-deficient patients from 23 families with a median age at inclusion of 26 years. All patients had biallelic pathogenic variants in the ADA2 gene. The most common clinical findings included cutaneous involvement (79.3%), (hepato)splenomegaly (70.8%) and recurrent infections (58.6%). Stroke was observed in 41.4% of the patients. The main laboratory abnormalities were hypogammaglobulinemia and various cytopenias. Patients presented most often with a mixed phenotype involving vasculopathy, immunodeficiency and hematologic manifestations (62.1%). In this cohort, malignancies were reported in eight patients (27.6%), of whom five presented with a hematologic malignancy and two with a basal cell carcinoma. Four patients developed hemophagocytic lymphohistiocytosis (HLH) or an HLH-like episode, of whom three passed away during or shortly after the occurrence of HLH. TNF-inhibitors (TNFi) were effective in treating vasculopathy-associated symptoms and preventing stroke, but were hardly effective in the treatment of hematologic manifestations. Three patients underwent hematopoietic cell transplantation and two of them are doing well with complete resolution of DADA2-related symptoms. The overall mortality in this cohort was 17.2%. In conclusion, this cohort describes the clinical, genetic and laboratory findings of 29 Dutch DADA2 patients. We describe the occurrence of HLH as a life-threatening disease complication and report a relatively high incidence of malignancies and mortality

    Evaluation and Management of Deficiency of Adenosine Deaminase 2: An International Consensus Statement

    Get PDF
    IMPORTANCE: Deficiency of adenosine deaminase 2 (DADA2) is a recessively inherited disease characterized by systemic vasculitis, early-onset stroke, bone marrow failure, and/or immunodeficiency affecting both children and adults. DADA2 is among the more common monogenic autoinflammatory diseases, with an estimate of more than 35 000 cases worldwide, but currently, there are no guidelines for diagnostic evaluation or management. OBJECTIVE: To review the available evidence and develop multidisciplinary consensus statements for the evaluation and management of DADA2. EVIDENCE REVIEW: The DADA2 Consensus Committee developed research questions based on data collected from the International Meetings on DADA2 organized by the DADA2 Foundation in 2016, 2018, and 2020. A comprehensive literature review was performed for articles published prior to 2022. Thirty-two consensus statements were generated using a modified Delphi process, and evidence was graded using the Oxford Center for Evidence-Based Medicine Levels of Evidence. FINDINGS: The DADA2 Consensus Committee, comprising 3 patient representatives and 35 international experts from 18 countries, developed consensus statements for (1) diagnostic testing, (2) screening, (3) clinical and laboratory evaluation, and (4) management of DADA2 based on disease phenotype. Additional consensus statements related to the evaluation and treatment of individuals with DADA2 who are presymptomatic and carriers were generated. Areas with insufficient evidence were identified, and questions for future research were outlined. CONCLUSIONS AND RELEVANCE: DADA2 is a potentially fatal disease that requires early diagnosis and treatment. By summarizing key evidence and expert opinions, these consensus statements provide a framework to facilitate diagnostic evaluation and management of DADA2

    Evaluation and Management of Deficiency of Adenosine Deaminase 2: An International Consensus Statement

    Get PDF
    Importance: Deficiency of adenosine deaminase 2 (DADA2) is a recessively inherited disease characterized by systemic vasculitis, early-onset stroke, bone marrow failure, and/or immunodeficiency affecting both children and adults. DADA2 is among the more common monogenic autoinflammatory diseases, with an estimate of more than 35000 cases worldwide, but currently, there are no guidelines for diagnostic evaluation or management. Objective: To review the available evidence and develop multidisciplinary consensus statements for the evaluation and management of DADA2. Evidence Review: The DADA2 Consensus Committee developed research questions based on data collected from the International Meetings on DADA2 organized by the DADA2 Foundation in 2016, 2018, and 2020. A comprehensive literature review was performed for articles published prior to 2022. Thirty-two consensus statements were generated using a modified Delphi process, and evidence was graded using the Oxford Center for Evidence-Based Medicine Levels of Evidence. Findings: The DADA2 Consensus Committee, comprising 3 patient representatives and 35 international experts from 18 countries, developed consensus statements for (1) diagnostic testing, (2) screening, (3) clinical and laboratory evaluation, and (4) management of DADA2 based on disease phenotype. Additional consensus statements related to the evaluation and treatment of individuals with DADA2 who are presymptomatic and carriers were generated. Areas with insufficient evidence were identified, and questions for future research were outlined. Conclusions and Relevance: DADA2 is a potentially fatal disease that requires early diagnosis and treatment. By summarizing key evidence and expert opinions, these consensus statements provide a framework to facilitate diagnostic evaluation and management of DADA2

    Peroxisomal abnormalities in the immortalized human hepatocyte (IHH) cell line

    No full text
    The immortalized human hepatocyte (IHH) cell line is increasingly used for studies related to liver metabolism, including hepatic glucose, lipid, lipoprotein and triglyceride metabolism, and the effect of therapeutic interventions. To determine whether the IHH cell line is a good model to investigate hepatic peroxisomal metabolism, we measured several peroxisomal parameters in IHH cells and, for comparison, HepG2 cells and primary skin fibroblasts. This revealed a marked plasmalogen deficiency and a deficient fatty acid α-oxidation in the IHH cells, due to a defect of PEX7, a cytosolic receptor protein required for peroxisomal import of a subset of peroxisomal proteins. These abnormalities have consequences for the lipid homeostasis of these cells and thus should be taken into account for the interpretation of data previously generated by using this cell line and when considering using this cell line for future researc

    Clinical and Laboratory Diagnosis of Peroxisomal Disorders

    No full text
    The peroxisomal disorders (PDs) are a heterogeneous group of genetic diseases in man caused by an impairment in peroxisome biogenesis or one of the metabolic functions of peroxisomes. Thanks to the revolutionary technical developments in gene sequencing methods and their increased use in patient diagnosis, the field of genetic diseases in general and peroxisomal disorders in particular has dramatically changed in the last few years. Indeed, several novel peroxisomal disorders have been identified recently and in addition it has been realized that the phenotypic spectrum of patients affected by a PD keeps widening, which makes clinical recognition of peroxisomal patients increasingly difficult. Here, we describe these new developments and provide guidelines for the clinical and laboratory diagnosis of peroxisomal patient

    Zellweger spectrum disorders: clinical overview and management approach

    No full text
    Zellweger spectrum disorders (ZSDs) represent the major subgroup within the peroxisomal biogenesis disorders caused by defects in PEX genes. The Zellweger spectrum is a clinical and biochemical continuum which can roughly be divided into three clinical phenotypes. Patients can present in the neonatal period with severe symptoms or later in life during adolescence or adulthood with only minor features. A defect of functional peroxisomes results in several metabolic abnormalities, which in most cases can be detected in blood and urine. There is currently no curative therapy, but supportive care is available. This review focuses on the management of patients with a ZSD and provides recommendations for supportive therapeutic options for all those involved in the care for ZSD patient

    Clinical and Biochemical Pitfalls in the Diagnosis of Peroxisomal Disorders

    No full text
    Peroxisomal disorders are a heterogeneous group of genetic metabolic disorders, caused by a defect in peroxisome biogenesis or a deficiency of a single peroxisomal enzyme. The peroxisomal disorders include the Zellweger spectrum disorders, the rhizomelic chondrodysplasia punctata spectrum disorders, X-linked adrenoleukodystrophy, and multiple single enzyme deficiencies. There are several core phenotypes caused by peroxisomal dysfunction that clinicians can recognize. The diagnosis is suggested by biochemical testing in blood and urine and confirmed by functional assays in cultured skin fibroblasts, followed by mutation analysis. This review describes the phenotype of the main peroxisomal disorders and possible pitfalls in (laboratory) diagnosis to aid clinicians in the recognition of this group of disease
    corecore