130 research outputs found

    HIV/AIDS, Security and Conflict: New Realities, New Responses

    Get PDF
    Ten years after the HIV/AIDS epidemic itself was identified as a threat to international peace and security, findings from the three-year AIDS, Security and Conflict Initiative (ASCI)(1) present evidence of the mutually reinforcing dynamics linking HIV/AIDS, conflict and security

    Traffic particles and occurrence of acute myocardial infarction: a case–control analysis

    Get PDF
    OBJECTIVES: We modelled exposure to traffic particles using a latent variable approach and investigated whether long-term exposure to traffic particles is associated with an increase in the occurrence of acute myocardial infarction (AMI) using data from a population-based coronary disease registry. METHODS: Cases of individually validated AMI were identified between 1995 and 2003 as part of the Worcester Heart Attack Study. Population controls were selected from Massachusetts, USA, resident lists. NO(2) and PM(2.5) filter absorbance were measured at 36 locations throughout the study area. The air pollution data were used to estimate exposure to traffic particles using a semiparametric latent variable regression model. Conditional logistic models were used to estimate the association between exposure to traffic particles and occurrence of AMI. RESULTS: Modelled exposure to traffic particles was highest near the city of Worcester. Cases of AMI were more exposed to traffic and traffic particles compared to controls. An interquartile range increase in modelled traffic particles was associated with a 10% (95% CI 4% to 16%) increase in the odds of AMI. Accounting for spatial dependence at the census tract, but not block group, scale substantially attenuated this association. CONCLUSIONS: These results provide some support for an association between long-term exposure to traffic particles and risk of AMI. The results were sensitive to the scale selected for the analysis of spatial dependence, an issue that requires further investigation. The latent variable model captured variation in exposure, although on a relatively large spatial scale

    Toxicity of lunar dust

    Full text link
    The formation, composition and physical properties of lunar dust are incompletely characterised with regard to human health. While the physical and chemical determinants of dust toxicity for materials such as asbestos, quartz, volcanic ashes and urban particulate matter have been the focus of substantial research efforts, lunar dust properties, and therefore lunar dust toxicity may differ substantially. In this contribution, past and ongoing work on dust toxicity is reviewed, and major knowledge gaps that prevent an accurate assessment of lunar dust toxicity are identified. Finally, a range of studies using ground-based, low-gravity, and in situ measurements is recommended to address the identified knowledge gaps. Because none of the curated lunar samples exist in a pristine state that preserves the surface reactive chemical aspects thought to be present on the lunar surface, studies using this material carry with them considerable uncertainty in terms of fidelity. As a consequence, in situ data on lunar dust properties will be required to provide ground truth for ground-based studies quantifying the toxicity of dust exposure and the associated health risks during future manned lunar missions.Comment: 62 pages, 9 figures, 2 tables, accepted for publication in Planetary and Space Scienc

    Particulate air pollution and chronic ischemic heart disease in the eastern United States: a county level ecological study using satellite aerosol data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are several known factors that cause ischemic heart disease. However, the part played by air pollution still remains something of a mystery. Recent attention has focused on the chronic effect of particulate matter on heart disease. Satellite-derived aerosol optical depth (AOD) was found to be correlated with <it>PM</it><sub>2.5 </sub>in the eastern US. The objective of this study was to examine if there is an association between aerosol air pollution as indicated by AOD and chronic ischemic heart disease (CIHD) in the eastern US.</p> <p>Methods</p> <p>An ecological geographic study method was employed. Race and age standardized mortality rate (SMR) of CIHD was computed for each of the 2306 counties for the time period 2003–2004. A mean AOD raster grid for the same period was derived from Moderate Resolution Imaging Spectrometer (MODIS) aerosol data and the average AOD was calculated for each county. A bivariate Moran's I scatter plot, a map of local indicator of spatial association (LISA) clusters, and three regression models (ordinary least square, spatial lag, and spatial error) were used to analyze the relationship between AOD and CIHD SMR.</p> <p>Results</p> <p>The global Moran's I value is 0.2673 (<it>p </it>= 0.001), indicating an overall positive spatial correlation of CIHD SMR and AOD. The entire study area is dominated by spatial clusters of AOD against SMR (high AOD and high SMR in the east, and low AOD and low SMR in the west) (permutations = 999, <it>p </it>= 0.05). Of the three regression models, the spatial error model achieved the best fit (R<sup>2 </sup>= 0.28). The effect of AOD is positive and significant (beta = 0.7774, p = 0.01).</p> <p>Conclusion</p> <p>Aerosol particle pollution has adverse effect on CIHD mortality risk in the eastern US. High risk of CIHD mortality was found in areas with elevated levels of outdoor aerosol air pollution as indicated by satellite derived AOD. The evidence of the association would support targeting of policy interventions on such areas to reduce air pollution levels. Remote sensing AOD data could be used as an alternative health-related indictor of air quality.</p

    The Influence of Meteorology on the Spread of Influenza: Survival Analysis of an Equine Influenza (A/H3N8) Outbreak

    Get PDF
    The influences of relative humidity and ambient temperature on the transmission of influenza A viruses have recently been established under controlled laboratory conditions. The interplay of meteorological factors during an actual influenza epidemic is less clear, and research into the contribution of wind to epidemic spread is scarce. By applying geostatistics and survival analysis to data from a large outbreak of equine influenza (A/H3N8), we quantified the association between hazard of infection and air temperature, relative humidity, rainfall, and wind velocity, whilst controlling for premises-level covariates. The pattern of disease spread in space and time was described using extraction mapping and instantaneous hazard curves. Meteorological conditions at each premises location were estimated by kriging daily meteorological data and analysed as time-lagged time-varying predictors using generalised Cox regression. Meteorological covariates time-lagged by three days were strongly associated with hazard of influenza infection, corresponding closely with the incubation period of equine influenza. Hazard of equine influenza infection was higher when relative humidity was <60% and lowest on days when daily maximum air temperature was 20–25°C. Wind speeds >30 km hour−1 from the direction of nearby infected premises were associated with increased hazard of infection. Through combining detailed influenza outbreak and meteorological data, we provide empirical evidence for the underlying environmental mechanisms that influenced the local spread of an outbreak of influenza A. Our analysis supports, and extends, the findings of studies into influenza A transmission conducted under laboratory conditions. The relationships described are of direct importance for managing disease risk during influenza outbreaks in horses, and more generally, advance our understanding of the transmission of influenza A viruses under field conditions

    Associations between air temperature and cardio-respiratory mortality in the urban area of Beijing, China: a time-series analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Associations between air temperature and mortality have been consistently observed in Europe and the United States; however, there is a lack of studies for Asian countries. Our study investigated the association between air temperature and cardio-respiratory mortality in the urban area of Beijing, China.</p> <p>Methods</p> <p>Death counts for cardiovascular and respiratory diseases for adult residents (≥15 years), meteorological parameters and concentrations of particulate air pollution were obtained from January 2003 to August 2005. The effects of two-day and 15-day average temperatures were estimated by Poisson regression models, controlling for time trend, relative humidity and other confounders if necessary. Effects were explored for warm (April to September) and cold periods (October to March) separately. The lagged effects of daily temperature were investigated by polynomial distributed lag (PDL) models.</p> <p>Results</p> <p>We observed a J-shaped exposure-response function only for 15-day average temperature and respiratory mortality in the warm period, with 21.3°C as the threshold temperature. All other exposure-response functions could be considered as linear. In the warm period, a 5°C increase of two-day average temperature was associated with a RR of 1.098 (95% confidence interval (95%CI): 1.057-1.140) for cardiovascular and 1.134 (95%CI: 1.050-1.224) for respiratory mortality; a 5°C decrease of 15-day average temperature was associated with a RR of 1.040 (95%CI: 0.990-1.093) for cardiovascular mortality. In the cold period, a 5°C increase of two-day average temperature was associated with a RR of 1.149 (95%CI: 1.078-1.224) for respiratory mortality; a 5°C decrease of 15-day average temperature was associated with a RR of 1.057 (95%CI: 1.022-1.094) for cardiovascular mortality. The effects remained robust after considering particles as additional confounders.</p> <p>Conclusions</p> <p>Both increases and decreases in air temperature are associated with an increased risk of cardiovascular mortality. The effects of heat were immediate while the ones of cold became predominant with longer time lags. Increases in air temperature are also associated with an immediate increased risk of respiratory mortality.</p
    corecore