625 research outputs found
Is a Trineutron Resonance Lower in Energy than a Tetraneutron Resonance?
We present quantum Monte Carlo calculations of few-neutron systems confined
in external potentials based on local chiral interactions at
next-to-next-to-leading order in chiral effective field theory. The energy and
radial densities for these systems are calculated in different external
Woods-Saxon potentials. We assume that their extrapolation to zero
external-potential depth provides a quantitative estimate of three- and
four-neutron resonances. The validity of this assumption is demonstrated by
benchmarking with an exact diagonalization in the two-body case. We find that
the extrapolated trineutron resonance, as well as the energy for shallow well
depths, is lower than the tetraneutron resonance energy. This suggests that a
three-neutron resonance exists below a four-neutron resonance in nature and is
potentially measurable. To confirm that the relative ordering of three- and
four-neutron resonances is not an artifact of the external confinement, we test
that the odd-even staggering in the helium isotopic chain is reproduced within
this approach. Finally, we discuss similarities between our results and
ultracold Fermi gases.Comment: 6 pages, 5 figures, version compatible with published lette
Signatures of few-body resonances in finite volume
We study systems of bosons and fermions in finite periodic boxes and show how
the existence and properties of few-body resonances can be extracted from
studying the volume dependence of the calculated energy spectra. Using a
plane-wave-based discrete variable representation to conveniently implement
periodic boundary conditions, we establish that avoided level crossings occur
in the spectra of up to four particles and can be linked to the existence of
multi-body resonances. To benchmark our method we use two-body calculations,
where resonance properties can be determined with other methods, as well as a
three-boson model interaction known to generate a three-boson resonance state.
Finding good agreement for these cases, we then predict three-body and
four-body resonances for models using a shifted Gaussian potential. Our results
establish few-body finite-volume calculations as a new tool to study few-body
resonances. In particular, the approach can be used to study few-neutron
systems, where such states have been conjectured to exist.Comment: 13 pages, 10 figures, 2 tables, published versio
Signatures of Dark Matter Scattering Inelastically Off Nuclei
Direct dark matter detection focuses on elastic scattering of dark matter
particles off nuclei. In this study, we explore inelastic scattering where the
nucleus is excited to a low-lying state of 10-100 keV, with subsequent prompt
de-excitation. We calculate the inelastic structure factors for the odd-mass
xenon isotopes based on state-of-the-art large-scale shell-model calculations
with chiral effective field theory WIMP-nucleon currents. For these cases, we
find that the inelastic channel is comparable to or can dominate the elastic
channel for momentum transfers around 150 MeV. We calculate the inelastic
recoil spectra in the standard halo model, compare these to the elastic case,
and discuss the expected signatures in a xenon detector, along with
implications for existing and future experiments. The combined information from
elastic and inelastic scattering will allow to determine the dominant
interaction channel within one experiment. In addition, the two channels probe
different regions of the dark matter velocity distribution and can provide
insight into the dark halo structure. The allowed recoil energy domain and the
recoil energy at which the integrated inelastic rates start to dominate the
elastic channel depend on the mass of the dark matter particle, thus providing
a potential handle to constrain its mass.Comment: 9 pages, 7 figures. Matches resubmitted version to Phys. Rev. D. One
figure added; supplemental material (fits to the structure functions) added
as an Appendi
Collisional excitation of CH(X-2 Pi) by He: new ab initio potential energy surfaces and scattering calculations
S.M. and F.L. greatly acknowledge the financial support of ANR project ‘HYDRIDES’. This research utilized Queen Mary's MidPlus computational facilities, supported by QMUL Research-IT and funded by EPSRC grant EP/K000128/1. J.K. acknowledges the financial support by the National Science Foundation Grant No. CHE-121333
Influence of nonmagnetic dielectric spacers on the spin wave response of one-dimensional planar magnonic crystals
The one-dimensional planar magnonic crystals are usually fabricated as a
sequence of stripes intentionally or accidentally separated by non-magnetic
spacers. The influence of spacers on shaping the spin wave spectra is complex
and still not completely clarified. We performed the detailed numerical studies
of the one-dimensional single- and bi-component magnonic crystals comprised of
a periodic array of thin ferromagnetic stripes separated by non-magnetic
spacers. We showed that the dynamic dipolar interactions between the stripes
mediated by non-magnetic spacer, even ultra-narrow, significantly shift up the
frequency of the ferromagnetic resonance and simultaneously reduce the spin
wave group velocity, which is manifested by the flattening of the magnonic
band. We attributed these changes in the spectra to the modifications of
dipolar pinning and shape anisotropy both dependent on the width of the spacers
and the thickness of the stripes, as well as to the dynamical magnetic volume
charges formed due to inhomogeneous spin wave amplitude
An investigation of thermodynamics, microscopic structure, depolarized Rayleigh scattering, and collision dynamics in Xe-N-2 supercritical mixtures
We would like to dedicate this work to the late Professor W. A. Steele (W.A.S.), Penn State University, USA. NATO Research-Project SA 5-2-05(CRG 950087) JARC (97) 288 is acknowledged for project funding to J.S., H.V. and W.A.S. The Greek State Scholarships Foundation (IKY) is acknowledged for an award based on performance to S. M. This work was supported by computational time granted from the Greek Research & Technology Network (GRNET) in the National HPC facility ARIS. The CPU time of the Computing Centre of the University of Athens (Greece) is gratefully acknowledged. This research utilized Queen Mary’s Mid-Plus computational facilities, supported by QMUL Research-IT and funded by EPSRC grant EP/K000128/1. J.K. acknowledges financial support from the NSF Grant No. CHE-1565872 to Millard Alexander
OH+ in astrophysical media: state-to-state formation rates, Einstein coefficients and inelastic collision rates with He
The rate constants required to model the OH observations in different
regions of the interstellar medium have been determined using state of the art
quantum methods.
First, state-to-state rate constants for the H+ O()
H + OH reaction have been obtained using
a quantum wave packet method. The calculations have been compared with
time-independent results to asses the accuracy of reaction probabilities at
collision energies of about 1 meV. The good agreement between the simulations
and the existing experimental cross sections in the 1 eV energy range
shows the quality of the results.
The calculated state-to-state rate constants have been fitted to an
analytical form. Second, the Einstein coefficients of OH have been obtained
for all astronomically significant ro-vibrational bands involving the
and/or electronic states.
For this purpose the potential energy curves and electric dipole transition
moments for seven electronic states of OH are calculated with {\it ab
initio} methods at the highest level and including spin-orbit terms, and the
rovibrational levels have been calculated including the empirical spin-rotation
and spin-spin terms. Third, the state-to-state rate constants for inelastic
collisions between He and OH have been calculated using a
time-independent close coupling method on a new potential energy surface. All
these rates have been implemented in detailed chemical and radiative transfer
models. Applications of these models to various astronomical sources show that
inelastic collisions dominate the excitation of the rotational levels of
OH. In the models considered the excitation resulting from the chemical
formation of OH increases the line fluxes by about 10 % or less depending
on the density of the gas
Fluid Interactions That Enable Stealth Predation by the Upstream-Foraging Hydromedusa \u3cem\u3eCraspedacusta sowerbyi\u3c/em\u3e
Unlike most medusae that forage with tentacles trailing behind their bells, several species forage upstream of their bells using aborally located tentacles. It has been hypothesized that these medusae forage as stealth predators by placing their tentacles in more quiescent regions of flow around their bells. Consequently, they are able to capture highly mobile, sensitive prey. We used digital particle image velocimetry (DPIV) to quantitatively characterize the flow field around Craspedacusta sowerbyi, a freshwater upstream-foraging hydromedusa, to evaluate the mechanics of its stealth predation. We found that fluid velocities were minimal in front and along the sides of the bell where the tentacles are located. As a result, the deformation rates in the regions where the tentacles are located were low, below the threshold rates required to elicit an escape response in several species of copepods. Estimates of their encounter volume rates were examined on the basis of flow past the tentacles, and trade-offs associated with tentacle characteristics were evaluated
Reply to Comment on "Is a Trineutron Resonance Lower in Energy than a Tetraneutron Resonance?"
We reply to a Comment on our Letter [Phys. Rev. Lett. 118, 232501 (2017),
arXiv:1612.01502] by A. Deltuva and R. Lazauskas [Phys. Rev. Lett 123, 069201
(2019), arXiv:1904.00925].Comment: 2 pages, published versio
- …