5 research outputs found

    Machine components clustering with DSM and repeating method : case study of a soil mixing machine

    No full text
    In this study, components of the machine are analyzed to group all components into modular groups with a case study of a soil mixing machine. The study begins by creating a design structure matrix of all components. Next, the design structure matrix is transferred into a distance matrix of all components with Jaccard method. After that, the equation of complete linkage must be applied to change the distance matrix to a tree dendrogram for showing the relationship of machine components and dependent coefficient. With this tree dendrogram, six clusters are arranged:- the 1st cluster has 8 modules at the lowest dependent coefficient, the 2nd cluster has 7 modules, the 3rd cluster has 6 modules, the 4th cluster has 5 modules, the 5th cluster has 4 modules, and the 6th cluster has 2 modules at the highest dependent coefficient. Finally, the 1st cluster with 8 modules is considered to be the most proper cluster for this soil mixing machine by applying the repeating method to analyze all six clusters

    āļāļēāļĢāļžāļąāļ’āļ™āļēāļĄāļīāđ€āļ•āļ­āļĢāđŒāđāļĨāļ°āļĢāļ°āļšāļšāļāļēāļĢāļˆāļąāļ”āļāļēāļĢāļ™āđ‰āļģāļšāļēāļ”āļēāļĨāđāļšāļšāļŠāļĄāļ­āļ‡āļāļĨāļāļąāļ‡āļ•āļąāļ§āļĢāđˆāļ§āļĄāļāļąāļšāļ‹āļ­āļŸāļ•āđŒāđāļ§āļĢāđŒāļ›āļĢāļ°āļĒāļļāļāļ•āđŒāļ—āļģāļ‡āļēāļ™āļšāļ™āļĢāļ°āļšāļšāđ€āļ„āļĢāļ·āļ­āļ‚āđˆāļēāļĒāļ­āļīāļ™āđ€āļ—āļ­āļĢāđŒāđ€āļ™āđ‡āļ•Development of Groundwater Metering and Management System Using Embedded Computer and Web-based Application Software

    No full text
    āļšāļ—āļ„āļ§āļēāļĄāļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰ āļ™āļģāđ€āļŠāļ™āļ­āļāļēāļĢāļ­āļ­āļāđāļšāļšāđāļĨāļ°āļžāļąāļ’āļ™āļēāļĄāļīāđ€āļ•āļ­āļĢāđŒāļ™āđ‰āļģāļšāļēāļ”āļēāļĨāļĢāļ°āļšāļšāļŠāļĄāļ­āļ‡āļāļĨāļāļąāļ‡āļ•āļąāļ§āļ—āļģāļ‡āļēāļ™āļĢāđˆāļ§āļĄāļāļąāļšāļ‹āļ­āļŸāļ•āđŒāđāļ§āļĢāđŒāļ›āļĢāļ°āļĒāļļāļāļ•āđŒāđāļĨāļ°āļĢāļ°āļšāļšāļāļēāļ™āļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļĩāđˆāļ—āļģāļ‡āļēāļ™āļšāļ™āļĢāļ°āļšāļšāđ€āļ„āļĢāļ·āļ­āļ‚āđˆāļēāļĒāļ­āļīāļ™āđ€āļ—āļ­āļĢāđŒāđ€āļ™āđ‡āļ• āļŠāļģāļŦāļĢāļąāļšāđƒāļŠāđ‰āļ•āļĢāļ§āļˆāļ•āļīāļ”āļ•āļēāļĄāđāļĨāļ°āļšāļąāļ™āļ—āļķāļāļ›āļĢāļīāļĄāļēāļ“āļāļēāļĢāđƒāļŠāđ‰āļ™āđ‰āļģāļ‚āļ­āļ‡āļœāļđāđ‰āđƒāļŠāđ‰āļ™āđ‰āļģāļšāļēāļ”āļēāļĨāļ›āļĢāļ°āđ€āļ āļ—āļ­āļļāļ•āļŠāļēāļŦāļāļĢāļĢāļĄāđƒāļ™āļžāļ·āđ‰āļ™āļ—āļĩāđˆāļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒāļ—āļąāđ‰āļ‡āļĢāļ°āļĒāļ°āļ—āļēāļ‡āđƒāļāļĨāđ‰āđāļĨāļ°āļĢāļ°āļĒāļ°āļ—āļēāļ‡āđ„āļāļĨ āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰āļĒāļąāļ‡āđ„āļ”āđ‰āļžāļąāļ’āļ™āļēāļĢāļ°āđ€āļšāļĩāļĒāļšāļ§āļīāļ˜āļĩāļāļēāļĢāļ›āļĢāļ°āļĄāļ§āļĨāļœāļĨāļŠāļąāļāļāļēāļ“āļŠāļģāļŦāļĢāļąāļšāļšāļąāļ•āļĢāļŠāļ­āļšāļ„āļ§āļēāļĄāļœāļīāļ”āļ›āļāļ•āļīāļ‚āļ­āļ‡āļāļēāļĢāđƒāļŠāđ‰āļ™āđ‰āļģāļˆāļēāļāļ‚āđ‰āļ­āļĄāļđāļĨāļāļēāļĢāļ§āļąāļ”āļ„āđˆāļēāļ•āļąāļ§āđāļ›āļĢāļ•āđˆāļēāļ‡āđ† āļœāđˆāļēāļ™āļ­āļļāļ›āļāļĢāļ“āđŒāđ€āļ‹āđ‡āļ™āđ€āļ‹āļ­āļĢāđŒāļ—āļĩāđˆāđ„āļ”āđ‰āļ•āļīāļ”āļ•āļąāđ‰āļ‡āđ„āļ§āđ‰āļĢāđˆāļ§āļĄāļāļąāļšāļĄāļīāđ€āļ•āļ­āļĢāđŒāļ™āđ‰āļģāđāļĨāļ°āļĢāļ°āļšāļšāļŠāļĄāļ­āļ‡āļāļĨāļāļąāļ‡āļ•āļąāļ§ āđ‚āļ”āļĒāļ™āļģāļ‚āđ‰āļ­āļĄāļđāļĨāļ”āļąāļ‡āļāļĨāđˆāļēāļ§āļĄāļēāļ›āļĢāļ°āļĄāļ§āļĨāļœāļĨāļšāļ™āļ‹āļ­āļŸāļ•āđŒāđāļ§āļĢāđŒāļ›āļĢāļ°āļĒāļļāļāļ•āđŒāļ—āļģāļ‡āļēāļ™āđāļšāļšāđ€āļ§āļĨāļēāļˆāļĢāļīāļ‡āļžāļĢāđ‰āļ­āļĄāļĢāļ°āļšāļšāļāļēāļĢāļĢāļēāļĒāļ‡āļēāļ™āļœāļĨāđāļĨāļ°āđāļˆāđ‰āļ‡āđ€āļ•āļ·āļ­āļ™āļ•āđˆāļ­āļœāļđāđ‰āļ„āļ§āļšāļ„āļļāļĄāđāļĨāļ°āļœāļđāđ‰āđƒāļŠāđ‰āļ™āđ‰āļģ āļˆāļēāļāļāļēāļĢāļˆāļģāļĨāļ­āļ‡āļāļēāļĢāļ—āļģāļ‡āļēāļ™āļ‚āļ­āļ‡āļĢāļ°āļšāļšāļ”āđ‰āļ§āļĒ MATLAB Simulink āđ€āļžāļ·āđˆāļ­āļ—āļ”āļŠāļ­āļšāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļœāļĨāļ‚āļ­āļ‡āļĢāļ°āđ€āļšāļĩāļĒāļšāļ§āļīāļ˜āļĩāļāļēāļĢāļ•āļĢāļ§āļˆāļŠāļ­āļšāļāļēāļĢāđƒāļŠāđ‰āļ™āđ‰āļģāļšāļēāļ”āļēāļĨ āļžāļšāļ§āđˆāļēāđƒāļŦāđ‰āļœāļĨāļĨāļąāļžāļ˜āđŒāļŠāļ­āļ”āļ„āļĨāđ‰āļ­āļ‡āļāļąāļ™āļāļąāļšāļāļēāļĢāļ—āļ”āļŠāļ­āļšāđ‚āļ”āļĒāđƒāļŠāđ‰āļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļĩāđˆāđ„āļ”āđ‰āļˆāļēāļāļāļēāļĢāļ§āļąāļ”āļˆāļĢāļīāļ‡āđƒāļ™āļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āļ āļēāļ„āļŠāļ™āļēāļĄIn this paper, development of smart metering and management system for groundwater utilization is proposed. It has been designed as a tool to monitor and record quantity of groundwater usage, from both short and long distance, industrial users in Thailand. The system comprises of embedded computer, groundwater metering unit and web-based software for monitoring and management. Moreover, online signal processing algorithm has been developed and used to detect fraudulent groundwater usage. The real-time application software processes signals from sensors and builds up supporting information for security warning, decision making and report to the user. By running MATLAB Simulink on fraudulent detection algorithm, the simulation results are found compatible to data that collected from the field test of smart metering system

    Applying Shainin’s Tools to Process Improvement for Reducing Cracking Defect of Sanitary Product

    No full text
    The objective of this research attempt is to implement the DMAIC (Define, Measure, Analyze, Improve, Control) approach, a part of the Six Sigma methodology, in order to diminish the loss of sanitary ware during the production process. Specifically, this study focuses on addressing the issue of cracking defects that often occur in the production of sanitary wares after the firing process. Cracking defects manifest as gaps on the surface of sanitary wares, resulting in nonconforming and aesthetically inferior products. The AG27 Model, a highly demand toilet bowl, was selected as the case study due to its significant occurrence of cracking defects, accounting for 20% of the total defective units. The research utilizes the Six Sigma methodology in conjunction with Shainin's tools to identify the root causes and enhance production yield. The employed Shainin's tools include the Family of variation (FOV's), Concentration chart, Paired comparison, and Better and current (B vs C). The primary focus area of investigation involves the variation in the forming process and the design of the plaster mold. Through the use of the concentration chart, it was determined that the cracking defects predominantly appear along the border line between the rim and body of the toilet bowl. Subsequent experiments, based on paired comparison, confirmed that the design of the border line, which incorporates a hollow body shape, and the potential degradation of mold quality due to frequent use, were the two significant factors contributing to the cracking defects. In order to address these issues, a new design was implemented to enhance the connection between the rim and solid body of the AG27 toilet bowl. The practicality of this solution was validated through the utilization of the B vs C tool during the improvement phase. As a result, the occurrence of cracking defects decreased from approximately 4.0% to 1.92% during the control phase, representing a potential reduction of defects by over 50%

    Lean Production for Reducing Wastes in Convex Lens Production Process

    No full text
    This research aimed to investigate the waste generated during the production of traditional convex lens. The study proposed a method to eliminate such waste by utilizing value stream mapping (VSM) as a tool for data collection and waste identification throughout the entire production process. Through the analysis of data using VSM, three specific types of waste were identified. These included losses resulting from ineffective utilization of the oven machine during the polymerization process, inefficiencies in personnel performance, and inappropriate working procedures. To address these waste issues, the task employed the work study method to optimize machine utilization, develop efficient work processes for personnel, and improve inappropriate procedures to enhance overall efficiency. The ECRS method was utilized to improve the process of waste elimination. The research findings demonstrated substantial reductions in waste within the production process. Specifically, the total throughput time decreased from 661.07 minutes to 480.68 minutes, representing a reduction of 27.29%. Furthermore, the total production lead time decreased from 1.20 days to 0.94 days, indicating a reduction of 21.67%. In terms of personnel, the workforce decreased from 42 employees per shift to 29 employees, reflecting a decrease of 30.95%. Finally, the number of oven machinery units required for all three shifts decreased from 3 ovens to 2 ovens, resulting in a reduction of 33.33%

    āļāļēāļĢāļŦāļēāļ„āđˆāļēāļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄāļ‚āļ­āļ‡āļ›āļąāļāļŦāļēāļāļēāļĢāļˆāļąāļ”āđ€āļŠāđ‰āļ™āļ—āļēāļ‡āļāļēāļĢāđ€āļ”āļīāļ™āļĢāļ–āļāļēāļĢāļ‚āļ™āļŠāđˆāļ‡āđ„āļ›āļĢāļĐāļ“āļĩāļĒāđŒ āļāļĢāļ“āļĩāļĻāļķāļāļĐāļē āļĻāļđāļ™āļĒāđŒāđ„āļ›āļĢāļĐāļ“āļĩāļĒāđŒāļāļšāļīāļ™āļ—āļĢāđŒāļšāļļāļĢāļĩOptimization of the Vehicle Routing Problem in Postal Transportation a Case Study of Kabinburi Mail Center

    No full text
    āļāļēāļĢāļ‚āļ™āļŠāđˆāļ‡āđ„āļ›āļĢāļĐāļ“āļĩāļĒāđŒ āđ€āļ›āđ‡āļ™āļŦāļ™āļķāđˆāļ‡āđƒāļ™āļ‚āļąāđ‰āļ™āļ•āļ­āļ™āļāļēāļĢāļ”āļģāđ€āļ™āļīāļ™āļ‡āļēāļ™āļŦāļĨāļąāļāļ‚āļ­āļ‡āļāļīāļˆāļāļēāļĢāđ„āļ›āļĢāļĐāļ“āļĩāļĒāđŒ āļ—āļĩāđˆāļ–āļ·āļ­āļ§āđˆāļēāļĄāļĩāļ„āļ§āļēāļĄāļŠāļģāļ„āļąāļāļ­āļĒāđˆāļēāļ‡āļĒāļīāđˆāļ‡ āđ€āļ™āļ·āđˆāļ­āļ‡āļˆāļēāļāđ€āļ›āđ‡āļ™āļ‚āļąāđ‰āļ™āļ•āļ­āļ™āļ—āļĩāđˆāđƒāļŠāđ‰āļ§āļąāļ”āļ„āļ§āļēāļĄāļŠāļēāļĄāļēāļĢāļ–āđƒāļ™āļāļēāļĢāđāļ‚āđˆāļ‡āļ‚āļąāļ™āđāļĨāļ°āļ„āļļāļ“āļ āļēāļžāđƒāļ™āļāļēāļĢāđƒāļŦāđ‰āļšāļĢāļīāļāļēāļĢāļ‚āļ­āļ‡āļŦāļ™āđˆāļ§āļĒāļ‡āļēāļ™āđ„āļ›āļĢāļĐāļ“āļĩāļĒāđŒ āļ”āļąāļ‡āļ™āļąāđ‰āļ™ āļāļēāļĢāļˆāļąāļ”āđ€āļŠāđ‰āļ™āļ—āļēāļ‡āļāļēāļĢāđ€āļ”āļīāļ™āļĢāļ–āļŠāļģāļŦāļĢāļąāļšāļāļēāļĢāļŠāđˆāļ‡āļ•āđˆāļ­āļŠāļīāđˆāļ‡āļ‚āļ­āļ‡āļ—āļĩāđˆāļŠāđˆāļ‡āļœāđˆāļēāļ™āđ„āļ›āļĢāļĐāļ“āļĩāļĒāđŒāļˆāļēāļāļĻāļđāļ™āļĒāđŒāđ„āļ›āļĢāļĐāļ“āļĩāļĒāđŒāđ„āļ›āļĒāļąāļ‡āļ—āļĩāđˆāļ—āļģāļāļēāļĢāđ„āļ›āļĢāļĐāļ“āļĩāļĒāđŒāđāļ•āđˆāļĨāļ°āđāļŦāđˆāļ‡ āđāļĨāļ°āļāļēāļĢāļˆāļąāļ”āđ€āļŠāđ‰āļ™āļ—āļēāļ‡āļāļēāļĢāđ€āļ”āļīāļ™āļĢāļ–āļŠāļģāļŦāļĢāļąāļšāļāļēāļĢāļĢāļ§āļšāļĢāļ§āļĄāļŠāļīāđˆāļ‡āļ‚āļ­āļ‡āļ—āļĩāđˆāļŠāđˆāļ‡āļœāđˆāļēāļ™āđ„āļ›āļĢāļĐāļ“āļĩāļĒāđŒāļˆāļēāļāļ—āļĩāđˆāļ—āļģāļāļēāļĢāđ„āļ›āļĢāļĐāļ“āļĩāļĒāđŒāđāļ•āđˆāļĨāļ°āđāļŦāđˆāļ‡āļāļĨāļąāļšāļĄāļēāļĒāļąāļ‡āļĻāļđāļ™āļĒāđŒāđ„āļ›āļĢāļĐāļ“āļĩāļĒāđŒ āđƒāļŦāđ‰āļĄāļĩāļ„āļ§āļēāļĄāđ€āļŦāļĄāļēāļ°āļŠāļĄāđāļĨāļ°āļĄāļĩāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļˆāļķāļ‡āļ–āļ·āļ­āļ§āđˆāļēāļĄāļĩāļ„āļ§āļēāļĄāļŠāļģāļ„āļąāļ āļ”āļąāļ‡āļ™āļąāđ‰āļ™ āđƒāļ™āļšāļ—āļ„āļ§āļēāļĄāļ™āļĩāđ‰āļœāļđāđ‰āļ§āļīāļˆāļąāļĒāļˆāļķāļ‡āđ„āļ”āđ‰āļ™āļģāđ€āļŠāļ™āļ­āđāļ™āļ§āļ„āļīāļ”āđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļāļēāļĢāļŦāļēāļ„āđˆāļēāļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄāļ‚āļ­āļ‡āļ›āļąāļāļŦāļēāļāļēāļĢāļˆāļąāļ”āđ€āļŠāđ‰āļ™āļ—āļēāļ‡āļāļēāļĢāđ€āļ”āļīāļ™āļĢāļ–āļāļēāļĢāļ‚āļ™āļŠāđˆāļ‡āđ„āļ›āļĢāļĐāļ“āļĩāļĒāđŒ āļāļĢāļ“āļĩāļĻāļķāļāļĐāļē āļĻāļđāļ™āļĒāđŒāđ„āļ›āļĢāļĐāļ“āļĩāļĒāđŒāļāļšāļīāļ™āļ—āļĢāđŒāļšāļļāļĢāļĩ āļ‹āļķāđˆāļ‡āļ§āļīāļ˜āļĩāđƒāļ™āļāļēāļĢāļŦāļēāļ„āđˆāļēāļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄāļ‚āļ­āļ‡āļ›āļąāļāļŦāļē āļœāļđāđ‰āļ§āļīāļˆāļąāļĒāđ„āļ”āđ‰āļ™āļģāļŦāļĨāļąāļāļāļēāļĢāļ‚āļ­āļ‡āļ›āļąāļāļŦāļēāļāļēāļĢāļˆāļąāļ”āđ€āļŠāđ‰āļ™āļ—āļēāļ‡āļāļēāļĢāđ€āļ”āļīāļ™āļĢāļ–āđāļšāļšāđ€āļ—āļĩāđˆāļĒāļ§āļāļĨāļąāļšāđ€āļ‚āđ‰āļēāļĄāļēāļ›āļĢāļ°āļĒāļļāļāļ•āđŒāđƒāļŠāđ‰ āđ€āļžāļ·āđˆāļ­āļŦāļēāđ€āļŠāđ‰āļ™āļ—āļēāļ‡āļāļēāļĢāđ€āļ”āļīāļ™āļĢāļ–āļŠāļģāļŦāļĢāļąāļšāļāļēāļĢāļ‚āļ™āļŠāđˆāļ‡āđ„āļ›āļĢāļĐāļ“āļĩāļĒāđŒāļ‚āļ­āļ‡āļĻāļđāļ™āļĒāđŒāđ„āļ›āļĢāļĐāļ“āļĩāļĒāđŒāļāļĢāļ“āļĩāļĻāļķāļāļĐāļēāļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄ āđāļĨāļ°āļĄāļĩāļ•āđ‰āļ™āļ—āļļāļ™āļĢāļ§āļĄāđƒāļ™āļāļēāļĢāļ‚āļ™āļŠāđˆāļ‡āļ—āļĩāđˆāļ•āđˆāļģāļ—āļĩāđˆāļŠāļļāļ” āļ‹āļķāđˆāļ‡āļœāļĨāļāļēāļĢāļ§āļīāļˆāļąāļĒāļˆāļēāļāđāļ™āļ§āļ„āļīāļ”āļ—āļĩāđˆāļ™āļģāđ€āļŠāļ™āļ­āļžāļšāļ§āđˆāļē āļˆāļģāļ™āļ§āļ™āļĒāļēāļ™āļžāļēāļŦāļ™āļ°āļ—āļĩāđˆāđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāļ‚āļ™āļŠāđˆāļ‡āđ„āļ›āļĢāļĐāļ“āļĩāļĒāđŒāļĨāļ”āļĨāļ‡āļˆāļēāļ 8 āļ„āļąāļ™ āđ€āļŦāļĨāļ·āļ­ 6 āļ„āļąāļ™ āļ™āļ­āļāđ€āļŦāļ™āļ·āļ­āļˆāļēāļāļ™āļĩāđ‰āļ„āđˆāļēāđƒāļŠāđ‰āļˆāđˆāļēāļĒāđƒāļ™āļāļēāļĢāļ‚āļ™āļŠāđˆāļ‡āđ„āļ›āļĢāļĐāļ“āļĩāļĒāđŒāļĨāļ”āļĨāļ‡āļˆāļēāļāđ€āļ”āļīāļĄ 25 āđ€āļ›āļ­āļĢāđŒāđ€āļ‹āđ‡āļ™āļ•āđŒ āļ”āļąāļ‡āļ™āļąāđ‰āļ™ āļˆāļķāļ‡āļŠāļēāļĄāļēāļĢāļ–āļŠāļĢāļļāļ›āđ„āļ”āđ‰āļ§āđˆāļē āđāļ™āļ§āļ„āļīāļ”āļ—āļĩāđˆāļ™āļģāđ€āļŠāļ™āļ­āđƒāļ™āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĄāļĩāđāļ™āļ§āđ‚āļ™āđ‰āļĄāļ—āļĩāđˆāļˆāļ°āļŠāļēāļĄāļēāļĢāļ–āļ™āļģāđ„āļ›āđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāļ›āļĢāļąāļšāļ›āļĢāļļāļ‡āđāļĨāļ°āļžāļąāļ’āļ™āļēāļĢāļ°āļšāļšāļāļēāļĢāļ‚āļ™āļŠāđˆāļ‡āđ„āļ›āļĢāļĐāļ“āļĩāļĒāđŒāļ‚āļ­āļ‡āļĻāļđāļ™āļĒāđŒāđ„āļ›āļĢāļĐāļ“āļĩāļĒāđŒāļāļĢāļ“āļĩāļĻāļķāļāļĐāļēāđƒāļ™āļ›āļąāļˆāļˆāļļāļšāļąāļ™āđ„āļ”āđ‰Postal transportation is the key task of postal operation. It is very crucial since transportation is the most important criteria in business competition and service quality of postal enterprise. Therefore, finding the optimal vehicle route on delivering from each postal office and collecting parcels from each sub-office to the main mail center should be conduct with high efficiency. This article proposes a concept in determining the optimal sequences of post offices of Kabinburi Mail Center. It aims at finding the best solution for the vehicle routing problems with back hauls (VRPB) with the lowest transportation cost. The results suggests that the number of vehicle should be reduced from 8 to 6 cars which will decrease the cost by approximately 25% from the current cost. It can be concluded that the proposal guideline can be applied to improve the existing operational transportation of the postal service
    corecore