13 research outputs found

    Differentially expressed venoms in functionally specialized polyps of the colonial hydrozoan Hydractinia symbiolongicarpus

    Get PDF
    This presentation was given at the 7th European Evolution and Development Conference – 26-29th June, 2018, Galway, Ireland. The poster won third place in the EEDC Student Poster Presentation competition.Cnidaria (jellyfish, hydra, sea anemones, etc.) represent the earliest diverging venomous animal lineage. Venom is deployed in cnidarians for predation, defense, competition, and digestion. Recent evidence suggests venom composition can be influenced by age, diet, geography, and the presence of predators or prey. Although venom production and maintenance are central to the life history of cnidarians, little is known about their venom composition with respect to biological or ecological function. Hydractiniid hydrozoans are an ideal system for studying venom function and evolution due to their functionally specialized tissue types and complex life cycles. The hydractiniid Hydractinia symbiolongicarpus displays a division of labor among its polyps that comprise the colony: dactylozooids (defense and predation), gastrozooids (feeding and digestion), and gonozooids (reproduction). Using an existing transcriptome of the different functional polyp types of H. symbiolongicarpus, we characterized the putative venom components and venom expression between these tissues. By using functionally specific polyps of H. symbiolongicarpus, we can determine how the venom arsenal varies for specific tasks. Understanding how venom composition is influenced by various developmental and ecological factors will lead to a better understanding of venom diversity and function in cnidarians

    Influences of functional variation on venom expression in hydractiniid hydrozoans

    Get PDF
    This presentation was given at the Gordon Research Conference: Venom Evolution, Function and Biomedical Applications – 5-10 August 2018, Mount Snow, VT, USACnidaria (jellyfish, hydra, sea anemones, etc) represent the earliest diverging venomous animal lineage. Cnidarians deploy venom for predation, defense, competition, and digestion. Recent evidence suggests venom composition can be influenced by age, diet, geography, and the presence of predators or prey. Although venom production and maintenance are central to the life history of cnidarians, little is known about their venom composition with respect to biological or ecological function. Hydractiniid hydrozoans are an ideal system for studying venom function and evolution due to their functionally specialized tissue types and complex life cycles. The hydractiniid Hydractinia symbiolongicarpus displays a division of labor among its polyps that comprise the colony: the gastrozooid (feeding and digestion), dactylozooid (defense and predation), and gonozooid (reproduction). Podocoryna carnea, a related hydractiniid hydrozoan, displays a complex life history that includes a benthic colonial stage and a pelagic medusa. Using publicly available RNA-seq data of the functionally specific polyp types of H. symbiolongicarpus and life cycle stages of P. carnea, we characterized the putative venom components and venom expression between these tissues. Based on this analysis, we can determine how the venom arsenal varies for specific tasks and between life cycle stages. Future work will include lineage-based transcriptomics on the stinging cells of H. symbiolongicarpus as well as functional characterization of specific venom components using CRISPR. Understanding how venom composition is influenced by various developmental and ecological factors will lead to a better understanding of venom diversity and function in cnidarians

    Localization of Multiple Jellyfish Toxins Shows Specificity for Functionally Distinct Polyps and Nematocyst Types in a Colonial Hydrozoan

    Get PDF
    Hydractinia symbiolongicarpus is a colonial hydrozoan that displays a division of labor through morphologically distinct and functionally specialized polyp types. As with all cnidarians, their venoms are housed in nematocysts, which are scattered across an individual. Here, we investigate the spatial distribution of a specific protein family, jellyfish toxins, in which multiple paralogs are differentially expressed across the functionally specialized polyps. Jellyfish toxins (JFTs) are known pore-forming toxins in the venoms of medically relevant species such as box jellyfish (class Cubozoa), but their role in other medusozoan venoms is less clear. Utilizing a publicly available single-cell dataset, we confirmed that four distinct H. symbiolongicarpus JFT paralogs are expressed in nematocyst-associated clusters, supporting these as true venom components in H. symbiolongicarpus. In situ hybridization and immunohistochemistry were used to localize the expression of these JFTs across the colony. These expression patterns, in conjunction with known nematocyst type distributions, suggest that two of these JFTs, HsymJFT1c-I and HsymJFT1c-II, are localized to specific types of nematocysts. We further interpret JFT expression patterns in the context of known regions of nematogenesis and differential rates of nematocyst turnover. Overall, we show that JFT expression patterns in H. symbiolongicarpus are consistent with the subfunctionalization of JFT paralogs across a partitioned venom system within the colony, such that each JFT is expressed within a specific set of functionally distinct polyp types and, in some cases, specific nematocyst types

    Venom system variation and the division of labor in the colonial hydrozoan Hydractinia symbiolongicarpus

    Get PDF
    Cnidarians (jellyfish, hydroids, sea anemones, and corals) possess a unique method for venom production, maintenance, and deployment through a decentralized system composed of different types of venom-filled stinging structures called nematocysts. In many species, nematocyst types are distributed heterogeneously across functionally distinct tissues. This has led to a prediction that different nematocyst types contain specific venom components. The colonial hydrozoan, Hydractinia symbiolongicarpus, is an ideal system to study the functional distribution of nematocyst types and their venoms, given that they display a division of labor through functionally distinct polyps within the colony. Here, we characterized the composition and distribution of nematocysts (cnidome) in the different polyp types and show that the feeding polyp (gastrozooid) has a distinct cnidome compared to the reproductive (gonozooid) and predatory polyp (dactylozooid). We generated a nematocyst-specific reporter line to track nematocyst development (nematogenesis) in H. symbiolongicarpus, and were able to confirm that nematogenesis primarily occurs in the mid-region of the gastrozooid and throughout stolons (tubes of epithelia that connect the polyps in the colony). This reporter line enabled us to isolate a nematocyst-specific lineage of cells for de novo transcriptome assembly, annotate venom-like genes (VLGs) and determine differential expression (DE) across polyp types. We show that a majority of VLGs are upregulated in gastrozooids, consistent with it being the primary site of active nematogenesis. However, despite gastrozooids producing more nematocysts, we found a number of VLGs significantly upregulated in dactylozooids, suggesting that these VLGs may be important for prey-capture. Our transgenic Hydractinia reporter line provides an opportunity to explore the complex interplay between venom composition, nematocyst diversity, and ecological partitioning in a colonial hydrozoan that displays a division of labor

    Transcriptomic Analysis of Four Cerianthid (Cnidaria, Ceriantharia) Venoms

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Tube anemones, or cerianthids, are a phylogenetically informative group of cnidarians with complex life histories, including a pelagic larval stage and tube-dwelling adult stage, both known to utilize venom in stinging-cell rich tentacles. Cnidarians are an entirely venomous group that utilize their proteinaceous-dominated toxins to capture prey and defend against predators, in addition to several other ecological functions, including intraspecific interactions. At present there are no studies describing the venom for any species within cerianthids. Given their unique development, ecology, and distinct phylogenetic-placement within Cnidaria, our objective is to evaluate the venom-like gene diversity of four species of cerianthids from newly collected transcriptomic data. We identified 525 venom-like genes between all four species. The venom-gene profile for each species was dominated by enzymatic protein and peptide families, which is consistent with previous findings in other cnidarian venoms. However, we found few toxins that are typical of sea anemones and corals, and furthermore, three of the four species express toxin-like genes closely related to potent pore-forming toxins in box jellyfish. Our study is the first to provide a survey of the putative venom composition of cerianthids and contributes to our general understanding of the diversity of cnidarian toxins.SĂŁo Paulo Research Foundation FAPESP 2015/24408-42017/50028-0 (SPRINT)2019/03552-0CNPq (PROTAX) 440539/2015-3CNPq (Research Productivity Scholarship)301293/2019-

    Raising Awareness of the Severity of “Contactless Stings” by Cassiopea Jellyfish and Kin

    Get PDF
    Discussion around avoidance and mitigation of jellyfish stings has traditionally focused on swimmers and divers being mindful of their behavior relative to swimming medusae (pelagic jellyfish). This framework must be restructured with the inclusion of the oblique risk posed by novel autonomous stinging structures like cassiosomes from Cassiopea (a jellyfish genus of the taxonomic order Rhizostomeae). Cassiosomes are released by Cassiopea sp. into subtropical waters that can consequently sting human skin, causing varying degrees of pain and irritation; this trait extends to other rhizostome jellyfish species. Swimmers and waders may put themselves at risk simply by coming into contact with agitated water in the vicinity of Cassiopea medusae, even without touching any part of the jellyfish (medusa, tentacles, or otherwise). Herein, we highlight details provided by 46 researchers and professional aquarists reporting incidents in which they experienced “stinging water” sensations, which we also refer to as “contactless stings’’. We report these findings in order to increase the awareness of a public safety hazard the community may be unaware of in their own labs, aquariums, and sampling locations

    The cnidarian parasite Ceratonova shasta utilizes inherited and recruited venom-like compounds during infection

    Get PDF
    Background Cnidarians are the most ancient venomous organisms. They store a cocktail of venom proteins inside unique stinging organelles called nematocysts. When a cnidarian encounters chemical and physical cues from a potential threat or prey animal, the nematocyst is triggered and fires a harpoon-like tubule to penetrate and inject venom into the prey. Nematocysts are present in all Cnidaria, including the morphologically simple Myxozoa, which are a speciose group of microscopic, spore-forming, obligate parasites of fish and invertebrates. Rather than predation or defense, myxozoans use nematocysts for adhesion to hosts, but the involvement of venom in this process is poorly understood. Recent work shows some myxozoans have a reduced repertoire of venom-like compounds (VLCs) relative to free-living cnidarians, however the function of these proteins is not known. Methods We searched for VLCs in the nematocyst proteome and a time-series infection transcriptome of Ceratonova shasta, a myxozoan parasite of salmonid fish. We used four parallel approaches to detect VLCs: BLAST and HMMER searches to preexisting cnidarian venom datasets, the machine learning tool ToxClassifier, and structural modeling of nematocyst proteomes. Sequences that scored positive by at least three methods were considered VLCs. We then mapped their time-series expressions in the fish host and analyzed their phylogenetic relatedness to sequences from other venomous animals. Results We identified eight VLCs, all of which have closely related sequences in other myxozoan datasets, suggesting a conserved venom profile across Myxozoa, and an overall reduction in venom diversity relative to free-living cnidarians. Expression of the VLCs over the 3-week fish infection varied considerably: three sequences were most expressed at one day post-exposure in the fish’s gills; whereas expression of the other five VLCs peaked at 21 days post-exposure in the intestines, coinciding with the formation of mature parasite spores with nematocysts. Expression of VLC genes early in infection, prior to the development of nematocysts, suggests venoms in C. shasta have been repurposed to facilitate parasite invasion and proliferation within the host. Molecular phylogenetics suggested some VLCs were inherited from a cnidarian ancestor, whereas others were more closely related to sequences from venomous non-Cnidarian organisms and thus may have gained qualities of venom components via convergent evolution. The presence of VLCs and their differential expression during parasite infection enrich the concept of what functions a “venom” can have and represent targets for designing therapeutics against myxozoan infections

    Cassiosomes are stinging-cell structures in the mucus of the upside-down jellyfish Cassiopea xamachana

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Snorkelers in mangrove forest waters inhabited by the upside-down jellyfish Cassiopea xamachana report discomfort due to a sensation known as stinging water, the cause of which is unknown. Using a combination of histology, microscopy, microfluidics, videography, molecular biology, and mass spectrometry-based proteomics, we describe C. xamachana stinging-cell structures that we term cassiosomes. These structures are released within C. xamachana mucus and are capable of killing prey. Cassiosomes consist of an outer epithelial layer mainly composed of nematocytes surrounding a core filled by endosymbiotic dinoflagellates hosted within amoebocytes and presumptive mesoglea. Furthermore, we report cassiosome structures in four additional jellyfish species in the same taxonomic group as C. xamachana (Class Scyphozoa; Order Rhizostomeae), categorized as either motile (ciliated) or nonmotile types. This inaugural study provides a qualitative assessment of the stinging contents of C. xamachana mucus and implicates mucus containing cassiosomes and free intact nematocytes as the cause of stinging water

    Phylogenetic and Selection Analysis of an Expanded Family of Putatively Pore-Forming Jellyfish Toxins (Cnidaria: Medusozoa)

    Get PDF
    A grant from the One-University Open Access Fund at the University of Kansas was used to defray the author's publication fees in this Open Access journal. The Open Access Fund, administered by librarians from the KU, KU Law, and KUMC libraries, is made possible by contributions from the offices of KU Provost, KU Vice Chancellor for Research & Graduate Studies, and KUMC Vice Chancellor for Research. For more information about the Open Access Fund, please see http://library.kumc.edu/authors-fund.xml.Many jellyfish species are known to cause a painful sting, but box jellyfish (class Cubozoa) are a well-known danger to humans due to exceptionally potent venoms. Cubozoan toxicity has been attributed to the presence and abundance of cnidarian-specific pore-forming toxins called jellyfish toxins (JFTs), which are highly hemolytic and cardiotoxic. However, JFTs have also been found in other cnidarians outside of Cubozoa, and no comprehensive analysis of their phylogenetic distribution has been conducted to date. Here, we present a thorough annotation of JFTs from 147 cnidarian transcriptomes and document 111 novel putative JFTs from over 20 species within Medusozoa. Phylogenetic analyses show that JFTs form two distinct clades, which we call JFT-1 and JFT-2. JFT-1 includes all known potent cubozoan toxins, as well as hydrozoan and scyphozoan representatives, some of which were derived from medically relevant species. JFT-2 contains primarily uncharacterized JFTs. Although our analyses detected broad purifying selection across JFTs, we found that a subset of cubozoan JFT-1 sequences are influenced by gene-wide episodic positive selection compared with homologous toxins from other taxonomic groups. This suggests that duplication followed by neofunctionalization or subfunctionalization as a potential mechanism for the highly potent venom in cubozoans. Additionally, published RNA-seq data from several medusozoan species indicate that JFTs are differentially expressed, spatially and temporally, between functionally distinct tissues. Overall, our findings suggest a complex evolutionary history of JFTs involving duplication and selection that may have led to functional diversification, including variability in toxin potency and specificity
    corecore