63 research outputs found
Resuscitation preparedness for general practice
General practices are not exempted from situations dealing with dire emergencies. For general practitioners to be effective in coping with such situations, they should at all times be prepared to resuscitate patients. This article gives an overview of the preparation required to manage such events.
(SA Fam Pract 2003;45(1):9-13)
Keywords: Resuscitation, emergency medicine, preparednes
Identification of solar nebula condensates in interplanetary dust particles and unequilibrated ordinary chondrites
Orthopyroxene and olivine grains, low in FeO, but containing MnO contents up to 5 wt percent were found in interplanetary dust particles (IDP) collected in the stratosphere. The majority of olivines and pyroxenes in meteorites contain less than 0.5 wt percent MnO. Orthopyroxenes and olivines high in Mn and low in FeO have only been reported from a single coarse grained chondrule rim in the Allende meteorite and from a Tieschitz matrix augite grain. The bulk MnO contents of the extraterrestrial dust particles with high MnO olivines and pyroxenes are close to CI chondrite abundances. High MnO, low FeO olivines and orthopyroxenes were also found in the matrix of Semarkona, an unequilibrated ordinary chondrite. This may indicate a related origin for minerals in extraterrestrial dust particles and in the matrix of unequilibrated ordinary chondrites
Assemblage of Presolar Materials and Early Solar System Condensates in Chondritic Porous Interplanetary Dust Particles
Anhydrous chondritic porous inter-planetary dust particles (CP IDPs) contain an assortment of highly primitive solar system components, molecular cloud matter, and presolar grains. These IDPs have largely escaped parent body processing that has affected meteorites, advocating cometary origins. Though the stardust abundance in CP IDPs is generally greater than in primitive meteorites, it can vary widely among individual CP IDPs. The average abundance of silicate stardust among isotopically primitive IDPs is approx. 375 ppm while some have extreme abundances up to approx. 1.5%. H and N isotopic anomalies are common in CP IDPs and the carrier of these anomalies has been traced to organic matter that has experienced chemical reactions in cold molecular clouds or the outer protosolar disk. Significant variations in these anomalies may reflect different degrees of nebular processing. Refractory inclusions are commonly observed in carbonaceous chondrites. These inclusions are among the first solar system condensates and display 16O-rich isotopic compositions. Refractory grains have also been observed in the comet 81P/Wild-2 samples re-turned from the Stardust Mission and in CP IDPs, but they occur with much less frequency. Here we conduct coordinated mineralogical and isotopic analyses of CP IDPs that were characterized for their bulk chemistry by to study the distribution of primitive components and the degree of nebular alteration incurred
Identification of a Compound Spinel and Silicate Presolar Grain in a Chondritic Interplanetary Dust Particle
Anhydrous chondritic porous interplanetary dust particles (CP IDPs) have undergone minimal parent body alteration and contain an assemblage of highly primitive materials, including molecular cloud material, presolar grains, and material that formed in the early solar nebula [1-3]. The exact parent bodies of individual IDPs are not known, but IDPs that have extremely high abundances of presolar silicates (up to 1.5%) most likely have cometary origins [1, 4]. The presolar grain abundance among these minimally altered CP IDPs varies widely. "Isotopically primitive" IDPs distinguished by anomalous bulk N isotopic compositions, numerous 15N-rich hotspots, and some C isotopic anomalies have higher average abundances of presolar grains (~375 ppm) than IDPs with isotopically normal bulk N (<10 ppm) [5]. Some D and N isotopic anomalies have been linked to carbonaceous matter, though this material is only rarely isotopically anomalous in C [1, 5, 6]. Previous studies of the bulk chemistry and, in some samples, the mineralogy of select anhydrous CP IDPs indicate a link between high C abundance and pyroxene-dominated mineralogy [7]. In this study, we conduct coordinated mineralogical and isotopic analyses of samples that were analyzed by [7] to characterize isotopically anomalous materials and to establish possible correlations with C abundance
New Manganese Silicide Mineral Phase in an Interplanetary Dust Particle
Comet 26P/Grigg-Skjellerup was identified as a source of an Earth-crossing dust stream with low Earth-encounter velocities, with peak anticipated fluxes during April in 2003 and 2004 [1]. In response to this prediction, NASA performed dedicated stratospheric dust collections using high altitude aircraft to target potential interplanetary dust particles (IDPs) from this comet stream in April 2003. Several IDPs from this collection have shown unusually low noble gas abundances [2] consistent with the predicted short space exposure ages of Grigg-Skjellerup dust particles [1]. High abundances of large D enrichments [3] and presolar grains [4] in IDPs from this collection are also consistent with an origin from the comet Grigg-Skjellerup. Here we report a new mineral from one of the cluster IDPs of the "Grigg-Skjellerup" collection, L2055. Our report focuses on an unusual manganese-iron-chromium silicide phase that, to our knowledge, has not been observed previously in nature. This unique phase may also shed light on the genesis of the enigmatic low-Fe,Mn-enriched (LIME) olivine that has been previously reported in IDPs and meteorites [5]
- …