26 research outputs found

    Single crystal field-effect transistors based on an organic selenium-containing semiconductor

    Full text link
    We report on the fabrication and characterization of single crystal field-effect transistors (FETs) based on diphenylbenzo diselenophene (DPh-BDSe). These organic field-effect transistors (OFETs) function as p-channel accumulation-mode devices. At room temperature, for the best devices, the threshold voltage is less than -7V and charge carrier mobility is nearly gate bias independent, ranging from 1cm2/Vs to 1.5 cm2/Vs depending on the source-drain bias. Mobility is increased slightly by cooling below room temperature and decreases below 280 K

    Less than 50% sublattice polarization in an insulating S=3/2 kagome' antiferromagnet at low T

    Full text link
    We have found weak long range antiferromagnetic order in the quasi-two-dimensional insulating oxide KCr3(OD)6(SO4)2 KCr_3(OD)_6(SO_4)_2 which contains Cr3+^{3+} S=3/2 ions on a kagom\'{e} lattice. In a sample with \approx 76% occupancy of the chromium sites the ordered moment is 1.1(3)μB\mu_B per chromium ion which is only one third of the N\'{e}el value gμBS=3μBg\mu_BS=3\mu_B. The magnetic unit cell equals the chemical unit cell, a situation which is favored by inter-plane interactions. Gapless quantum spin-fluctuations (Δ/kB>\Delta/k_B > T_N=1.6Karethedominantcontributiontothespincorrelationfunction, = 1.6K are the dominant contribution to the spin correlation function, S(Q,\omega)$ in the ordered phase.Comment: 18 pages, RevTex/Latex, with 6 figure

    About the first experiment at JINR nuclotron deuteron beam with energy 2.52 gev on investigation of transmutation of I-129, NP-237, PU-238 and PU-239 in the field of neutrons generated in pbtarget with U-blanket

    Get PDF
    The experiment described in this communication is a part of the scientific program „Investigations of physical aspects of electronuclear method of energy production and transmutation of radioactive waste of atomic energetic using relativistic beams from the JINR Synchrophasotron/Nuclotron“ - the project „Energy plus Transmutation“. The performing of the first experiment at deuteron beam with energy 2.52 GeV at the electronuclear setup which consists of Pb-target with U-blanket (206.4 kg of natural uranium) and transmutation samples and its preliminary results are described. The hermetic samples of isotopes of I-129, Np-237, Pu-238 and Pu-239 which are produced in atomic reactors and industry setups which use nuclear materials and nuclear technologies were irradiated in the field of electronuclear neutrons produced in the Pbtarget surrounded with the U-blanket setup “Energy plus transmutation”. The estimations of its transmutations (radioecological aspect) were obtained in result of measurements of gamma activities of these samples. The information about space-energy distribution of neutrons in the volume of the Pb-target and the U-blanket was obtained with help of sets of activation threshold detectors (Al, V, Cu, Co, Y, In, I, Ta, Au, W, Bi and other), solid state nuclear track detectors, He-3 neutron detectors and nuclear emulsions

    Perturbation Analysis of Heterochromatin-Mediated Gene Silencing and Somatic Inheritance

    Get PDF
    Repetitive sequences in eukaryotic genomes induce chromatin-mediated gene-silencing of juxtaposed genes. Many components that promote or antagonize silencing have been identified, but how heterochromatin causes variegated and heritable changes in gene expression remains mysterious. We have used inducible mis-expression in the Drosophila eye to recover new factors that alter silencing caused by the bwD allele, an insertion of repetitive satellite DNA that silences a bw+ allele on the homologous chromosome. Inducible modifiers allow perturbation of silencing at different times in development, and distinguish factors that affect establishment or maintenance of silencing. We find that diverse chromatin and RNA processing factors can de-repress silencing. Most factors are effective even in differentiated cells, implying that silent chromatin remains plastic. However, over-expression of the bantam microRNA or the crooked-legs (crol) zinc-finger protein only de-repress silencing when expressed in cycling cells. Over-expression of crol accelerates the cell cycle, and this is required for de-repression of silencing. Strikingly, continual over-expression of crol converts the speckled variegation pattern of bwD into sectored variegation, where de-repression is stably inherited through mitotic divisions. Over-expression of crol establishes an open chromatin state, but the factor is not needed to maintain this state. Our analysis reveals that active chromatin states can be efficiently inherited through cell divisions, with implications for the stable maintenance of gene expression patterns through development

    Rad3ATR Decorates Critical Chromosomal Domains with γH2A to Protect Genome Integrity during S-Phase in Fission Yeast

    Get PDF
    Schizosaccharomyces pombe Rad3 checkpoint kinase and its human ortholog ATR are essential for maintaining genome integrity in cells treated with genotoxins that damage DNA or arrest replication forks. Rad3 and ATR also function during unperturbed growth, although the events triggering their activation and their critical functions are largely unknown. Here, we use ChIP-on-chip analysis to map genomic loci decorated by phosphorylated histone H2A (γH2A), a Rad3 substrate that establishes a chromatin-based recruitment platform for Crb2 and Brc1 DNA repair/checkpoint proteins. Unexpectedly, γH2A marks a diverse array of genomic features during S-phase, including natural replication fork barriers and a fork breakage site, retrotransposons, heterochromatin in the centromeres and telomeres, and ribosomal RNA (rDNA) repeats. γH2A formation at the centromeres and telomeres is associated with heterochromatin establishment by Clr4 histone methyltransferase. We show that γH2A domains recruit Brc1, a factor involved in repair of damaged replication forks. Brc1 C-terminal BRCT domain binding to γH2A is crucial in the absence of Rqh1Sgs1, a RecQ DNA helicase required for rDNA maintenance whose human homologs are mutated in patients with Werner, Bloom, and Rothmund–Thomson syndromes that are characterized by cancer-predisposition or accelerated aging. We conclude that Rad3 phosphorylates histone H2A to mobilize Brc1 to critical genomic domains during S-phase, and this pathway functions in parallel with Rqh1 DNA helicase in maintaining genome integrity

    Retraction Note to: Superconductivity in molecular crystals induced by charge injection

    No full text

    Retraction Note to: Superconductivity at 52 K in hole-doped C60

    No full text

    Retraction Note to: Efficient organic photovoltaic diodes based on doped pentacene

    No full text
    corecore