322 research outputs found

    Discovery of Two Simultaneous Kilohertz Quasi-Periodic Oscillations in KS 1731-260

    Get PDF
    We have discovered two simultaneous quasi-periodic oscillations (QPOs) at 898.3+/-3.3 Hz and 1158.6+/-9.0 Hz in the 1996 August 1 observation of the low-mass X-ray binary KS 1731-260 with the Rossi X-ray Timing Explorer. The rms amplitude and FWHM of the lower frequency QPO were 5.3+/-0.7 % and 22+/-8 Hz, whereas those of the higher frequency QPO were 5.2+/-1.0 % and 37+/-21 Hz. At low inferred mass accretion rate both QPOs are visible, at slightly higher mass accretion rate the lower frequency QPO disappears and the frequency of the higher frequency QPO increases to ~1178 Hz. At the highest inferred mass accretion rate this QPO is only marginally detectable (2.1 sigma) near 1207 Hz, which is the highest frequency so far observed in an X-ray binary. The frequency difference (260.3+/-9.6 Hz) between the QPOs is equal to half the frequency of the oscillations observed in a type I burst in this source (at 523.92+/-0.05 Hz, Smith, Morgan and Bradt 1997). This suggests that the neutron star spin frequency is 261.96 Hz (3.8 ms), and that the lower frequency QPO is the beat between the higher frequency QPO, which could be a preferred orbital frequency around the neutron star, and the neutron star spin. During the 1996 August 31 observation we detected an additional QPO at 26.9+/-2.3 Hz, with a FWHM and rms amplitude of 11+/-5 Hz and 3.4+/-0.6 %.Comment: 6 pages including 3 figures, Astrophysical Journal Letters, in press (issue 482

    Precise Measurements of the Kilohertz Quasi-Periodic Oscillations in 4U 1728-34

    Get PDF
    We have analyzed seventeen observations of the low-mass X-ray binary and atoll source 4U 1728-34, carried out by the Rossi X-ray Timing Explorer in 1996 and 1997. We obtain precise measurements of the frequencies of the two simultaneous kilohertz quasi-periodic oscillations (kHz QPOs) in this source. We show that the frequency separation between the two QPO, Δν\Delta \nu, is always significantly smaller than the frequency of the nearly-coherent oscillations seen in this source during X-ray bursts, even at the lowest inferred mass accretion rate, when Δν\Delta \nu seems to reach its maximum value. We also find that Δν\Delta \nu decreases significantly, from 349.3±1.7349.3 \pm 1.7 Hz to 278.7±11.6278.7 \pm 11.6 Hz, as the frequency of the lower frequency kHz QPO increases from 615 to 895 Hz. This is the first time that variations of the kHz QPO peak separation are measured in a source which shows nearly-coherent oscillations during bursts.Comment: Accepted for publication in The Astrophysical Journal Letters. Uses AAS LaTex v4.0 (5 pages plus 4 postscript figures

    Intrauterine repair of gastroschisis in fetal rabbits

    Get PDF
    Objective: Infants with gastroschisis (GS) still face severe morbidity. Prenatal closure may prevent gastrointestinal organ damage, but intrauterine GS repair (GSR) has not been established yet. Methods: In New Zealand White rabbits we developed and compared GS versus GSR: creation of GS was achieved by hysterotomy, right-sided laparotomy of the fetus and pressure on the abdominal wall to provoke evisceration. GSR was accomplished by careful reposition of eviscerated organs and a running suture of the fetal abdominal wall. For study purposes, 18 animals were divided equally into 3 groups: GS, GS with GSR after 2 h, and unmanipulated controls (C). Vitality was assessed by echocardiography. After 5 h all animals were sacrificed. Results: GSR inflicted no increased mortality, because all fetuses survived GS or GS with GSR. All fetuses with GS demonstrated significant evisceration of abdominal organs. In contrast, the abdominal wall of the fetuses from GSR was intact. Conclusion:The present animal model demonstrated the technical feasibility and success of an intrauterine repair of GS for the first time. However, further long-term studies (leaving GS and GSR in utero for several days) will be necessary to compare survival rates and intestinal injury, motility or absorption. The clinical application of GSR in utero remains a vision so far. Copyright (C) 2003 S. Karger AG, Basel

    Interpreting the High Frequency QPO Power Spectra of Accreting Black Holes

    Full text link
    In the context of a relativistic hot spot model, we investigate different physical mechanisms to explain the behavior of quasi-periodic oscillations (QPOs) from accreting black holes. The locations and amplitudes of the QPO peaks are determined by the ray-tracing calculations presented in Schnittman & Bertschinger (2004a): the black hole mass and angular momentum give the geodesic coordinate frequencies, while the disk inclination and the hot spot size, shape, and overbrightness give the amplitudes of the different peaks. In this paper additional features are added to the existing model to explain the broadening of the QPO peaks as well as the damping of higher frequency harmonics in the power spectrum. We present a number of analytic results that closely agree with more detailed numerical calculations. Four primary pieces are developed: the addition of multiple hot spots with random phases, a finite width in the distribution of geodesic orbits, Poisson sampling of the detected photons, and the scattering of photons from the hot spot through a corona of hot electrons around the black hole. Finally, the complete model is used to fit the observed power spectra of both type A and type B QPOs seen in XTE J1550-564, giving confidence limits on each of the model parameters.Comment: 30 pages, 5 figures, submitted to Ap

    The large-scale jet-powered radio nebula of Circinus X-1

    Get PDF
    We present multi-epoch observations of the radio nebula around the neutron star X-ray binary Circinus X-1 made at 1.4 and 2.5 GHz with the Australia Telescope Compact Array between October 2000 and September 2004. The nebula can be seen as a result of the interaction between the jet from the system and the interstellar medium and it is likely that we are actually looking toward the central X-ray binary system through the jet-powered radio lobe. The study of the nebula thus offers a unique opportunity to estimate for the first time using calorimetry the energetics of a jet from an object clearly identified as a neutron star. An extensive discussion on the energetics of the complex is presented: a first approach is based on the minimum energy estimation, while a second one employs a self-similar model of the interaction between the jets and the surrounding medium. The results suggest an age for the nebula of \leq 10^5 years and a corresponding time-averaged jet power \geq 10^{35} erg s^{-1}. During periodic flaring episodes, the instantaneous jet power may reach values of similar magnitude to the X-ray luminosity.Comment: Accepted to MNRA

    Kilohertz QPO Peak Separation Is Not Constant in Scorpius X-1

    Get PDF
    We report on a series of twenty ~10^5 c/s, 0.125 msec time-resolution RXTE observations of the Z source and low-mass X-ray binary Scorpius X-1. Twin kilohertz quasi-periodic oscillation (QPO) peaks are obvious in nearly all observations. We find that the peak separation is not constant, as expected in some beat-frequency models, but instead varies from ~310 to ~230 Hz when the centroid frequency of the higher-frequency peak varies from ~875 to ~1085 Hz. We detect none of the additional QPO peaks at higher frequencies predicted in the photon bubble model (PBM), with best-case upper limits on the peaks' power ratio of 0.025. We do detect, simultaneously with the kHz QPO, additional QPO peaks near 45 and 90 Hz whose frequency increases with mass accretion rate. We interpret these as first and second harmonics of the so-called horizontal-branch oscillations well known from other Z sources and usually interpreted in terms of the magnetospheric beat-frequency model (BFM). We conclude that the magnetospheric BFM and the PBM are now unlikely to explain the kHz QPO in Sco X-1. In order to succeed in doing so, any BFM involving the neutron star spin (unseen in Sco X-1) will have to postulate at least one additional unseen frequency, beating with the spin to produce one of the kHz peaks.Comment: 6 pages including 3 figure

    Discovery of KiloHertz Quasi-Periodic Oscillations in 4U 1735-44

    Get PDF
    We discovered a single kHz quasi-periodic oscillation (QPO) near 1150 Hz in the Rossi X-ray Timing Explorer X-ray light curve of the low mass X-ray binary and atoll source 4U 1735-44. The rms amplitude of this peak was 2-3%, and the FWHM 6-40 Hz. There are indications that the kHz QPO frequency decreased from 1160 Hz to 1145 Hz when the count rate increased, which would be quite different from what is observed in other atoll sources for which kHz QPOs have been discovered. In the X-ray color-color diagram and hardness-intensity diagram the source traced out the curved branch (the so-called banana branch) which has been found by previous instruments. The kHz QPO was only detected when the source was at the lowest count rates during our observations, i.e. on the lower part of the banana branch. When 4U 1735-44 was at higher count rates, i.e. on the upper part of the banana branch and at higher inferred mass accretion rate with respect to that on the lower part of the banana branch, the QPO was not detected. Besides the kHz QPO we discovered a low frequency QPO with a frequency near 67 Hz, together with a complex broad peaked noise component below 30 Hz. This 67 Hz QPO may be related to the magnetospheric beat-frequency QPO, which is observed on the horizontal branch of Z sources. This idea is supported by the (peaked) noise found in both 4U 1735-44 and Z sources at frequencies just below the QPO frequency.Comment: 9 pages, including 2 figures. Accepted for publication in ApJ Letter

    Discovery of an X-ray pulsar in the low-mass X-ray binary 2A 1822-371

    Get PDF
    We report the discovery of 0.59 s X-ray pulsations from the low-mass X-ray binary, 5.57 hr dipping and eclipsing ADC source 2A 1822-371. Pulse arrival time analysis indicates a circular orbit with e < 0.03 (95% confidence) and an asini for the neutron star of 1.006(5) lightseconds, implying a mass function of (2.03+-0.03) x 10^-2 M_sun. The barycentric pulse period was 0.59325(2) s in 1996.270 and 0.59308615(5) s in 1998.205, indicating an average spin up with P_dot/P = (-1.52+-0.02) x 10^-4 yr^-1. For a magnetic field strength of ~1--5 x 10^12 G as derived from the X-ray spectrum the implied intrinsic X-ray luminosity is ~2-4 x 10^37 erg s^-1. The pulse amplitude is low, but increases steeply as a function of energy from a sinusoidal amplitude of 0.25% in 2-5.4 keV to ~3% above 20 keV. We discuss the constraints on the masses of the companion star and the fact that several aspects of the energy spectrum are in qualitative accordance with that of a strongly magnetised neutron star.Comment: 6 pages long, including 4 figures, uses emulateapj5, accepted for ApJL, Replaced figure
    • …
    corecore