45 research outputs found
Scanning Electron Microscopy of Microcorrosion Casts: Applications in Ophthalmologic Research
In light of the complicated nature of the ocular vasculature, it has been difficult to define the normal ocular anatomy by reference to two-dimensional tissue sections. Since it provides three-dimensional replicas, scanning electron microscopy (SEM) of vascular corrosion casts has therefore been an invaluable addition to the study of ocular vasculature. This technique also often permits identification of a normal vessel\u27s arterial, venous, or capillary nature by its surface features. In addition, this technique is finding increased use in defining anatomical features of human vascular disease and is especially well suited for the study of experimental neovascularization as it relates to the eye. This paper reviews the application of SEM of microscopic casts to the study of normal and diseased ocular vessels, as well as the contribution of this method to studies of experimental ocular neovascularization
Novel mutations of the carbohydrate sulfotransferase-6 (CHST6) gene causing macular corneal dystrophy in India
Purpose: Macular corneal dystrophy (MCD) is an autosomal recessive disorder characterized by progressive central haze, confluent punctate opacities and abnormal deposits in the cornea. It is caused by mutations in the carbohydrate sulfotransferase-6 (CHST6) gene, encoding corneal N-acetyl glucosamine-6-O-sulfotransferase (C-GlcNAc-6-ST). We screened the CHST6 gene for mutations in Indian families with MCD, in order to determine the range of pathogenic mutations. Methods: Genomic DNA was isolated from peripheral blood leukocytes of patients with MCD and normal controls. The coding regions of the CHST6 gene were amplified using three pairs of primers and amplified products were directly sequenced. Results: We identified 22 (5 nonsense, 5 frameshift, 2 insertion, and 10 missense) mutations in 36 patients from 31 families with MCD, supporting the conclusion that loss of function of this gene is responsible for this corneal disease. Seventeen of these mutations are novel. Conclusions: These data highlight the allelic heterogeneity of macular corneal dystrophy in Indian patients
Replication of TCF4 through Association and Linkage Studies in Late-Onset Fuchs Endothelial Corneal Dystrophy
Fuchs endothelial corneal dystrophy (FECD) is a common, late-onset disorder of
the corneal endothelium. Although progress has been made in understanding the
genetic basis of FECD by studying large families in which the phenotype is
transmitted in an autosomal dominant fashion, a recently reported genome-wide
association study identified common alleles at a locus on chromosome 18 near
TCF4 which confer susceptibility to FECD. Here, we report
the findings of our independent validation study for TCF4 using
the largest FECD dataset to date (450 FECD cases and 340 normal controls).
Logistic regression with sex as a covariate was performed for three genetic
models: dominant (DOM), additive (ADD), and recessive (REC). We found
significant association with rs613872, the target marker reported by Baratz
et al.(2010), for all three genetic models (DOM:
P = 9.33×10−35;
ADD:
P = 7.48×10−30;
REC:
P = 5.27×10−6).
To strengthen the association study, we also conducted a genome-wide linkage
scan on 64 multiplex families, composed primarily of affected sibling pairs
(ASPs), using both parametric and non-parametric two-point and multipoint
analyses. The most significant linkage region localizes to chromosome 18 from
69.94cM to 85.29cM, with a peak multipoint
HLOD = 2.5 at rs1145315 (75.58cM) under the DOM
model, mapping 1.5 Mb proximal to rs613872. In summary, our study presents
evidence to support the role of the intronic TCF4 single
nucleotide polymorphism rs613872 in late-onset FECD through both association and
linkage studies
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure