237 research outputs found

    Dynamics of ferrocene in molecular sieves probed by Mossbauer spectroscopy and nuclear resonant scattering

    Get PDF
    A detailed study on the slow dynamics of ferrocene in the unidimensional channels of the molecular sieves SSZ-24 and AlPO4-5 has been carried out, using Mössbauer spectroscopy (MS), nuclear forward scattering (NFS) and synchrotron radiation-based perturbed angular correlations (SRPAC). In both host systems, anisotropic rotational dynamics is observed above 100 K. For SSZ-24, this anisotropy persists even above the bulk melting temperature of ferrocene. Various theoretical models are exploited for the study of anisotropic discrete jump rotations for the first time. The experimental data can be described fairly well by a jump model that involves reorientations of the molecular axis on a cone mantle with an opening angle dependant on temperature

    A semi‐active human digital twin model for detecting severity of carotid stenoses from head vibration—A coupled computational mechanics and computer vision method

    Get PDF
    In this work we propose a methodology to detect the severity of carotid stenosis from a video of a human face with the help of a coupled blood flow and head vibration model. This semi‐active digital twin model is an attempt to link non‐invasive video of a patient face to the percentage of carotid occlusion. The pulsatile nature of blood flow through the carotid arteries induces a subtle head vibration. This vibration is a potential indicator of carotid stenosis severity and it is exploited in the present study. A head vibration model has been proposed in the present work that is linked to the forces generated by blood flow with or without occlusion. The model is used to generate a large number of virtual head vibration data for different degrees of occlusion. In order to determine the in vivo head vibration, a computer vision algorithm is adopted to use human face videos. The in vivo vibrations are compared against the virtual vibration data generated from the coupled computational blood flow/vibration model. A comparison of the in vivo vibration is made against the virtual data to find the best fit between in vivo and virtual data. The preliminary results on healthy subjects and a patient clearly indicate that the model is accurate and it possesses the potential for detecting approximate severity of carotid artery stenoses

    Metastasis-inducing S100A4 protein is associated with the disease activity of rheumatoid arthritis

    Get PDF
    Objectives. To evaluate the association between metastasis-inducing protein S100A4 and disease activity in patients with RA, and to demonstrate the effect of TNF-alpha blocking therapy on plasma levels of S100A4 in these patients. Methods. Plasma levels of the S100A4 protein were analysed in 40 anti-TNF-alpha naive patients with active RA. Of the 40 patients, 25 were treated with adalimumab and monitored over time. The conformational form of S100A4 was analysed using size-exclusion gel chromatography. TNF-alpha mRNA expression and protein synthesis were analysed by RT-PCR and ELISA, respectively. Results. Baseline levels of S100A4 were significantly correlated with disease activity in RA patients (r = 0.41; P < 0.01). After 12 weeks of treatment with adalimumab, there was an obvious shift in the conformations of S100A4 from the multimeric to the dimeric forms, whereas the total levels of the S100A4 protein remained unchanged. This suggests that the bioactive (multimer) S100A4 may decline in response to successful treatment with adalimumab. In addition, we showed significant up-regulation of TNF-alpha mRNA (P < 0.01), and protein release to the cell culture medium of monocytes stimulated with the S100A4 multimer compared with those treated with the dimer and to the unstimulated monocytes (P < 0.001). Conclusions. This is the first study to show that the levels of the S100A4 protein are correlated with RA disease activity. Furthermore, only the bioactive form, but not the total amount of S100A4, decreases after successful TNF-alpha blocking therapy in patients with RA. These data support an important role for the S100A4 multimer in the pathogenesis of R

    In-situ Mössbauer Spectroscopy with MIMOS II at Rio Tinto, Spain

    Get PDF
    The Rio Tinto, located in southwest Spain, exhibits a nearly constant, acidic pHvalue along its course. Due to the formation of sulfate minerals, Rio Tinto is considered a potential analogue site for sulfate-rich regions on Mars, in particular at the landing site of the Mars Exploration Rover Opportunity, where the ferric sulfate mineral jarosite was identified with Opportunity's M&ouml;ssbauer spectrometer. Primary and secondary mineralogy was investigated in situ with portable Raman and M&ouml;ssbauer spectrometers at four different Rio Tinto sampling sites. The two techniques analyse different sample portions due to their specific field of view and sampling depth and provide complementary mineralogical information

    Athena MIMOS II Mossbauer spectrometer investigation

    Get PDF
    M&ouml;ssbauer spectroscopy is a powerful tool for quantitative mineralogical analysis of Fe-bearing materials. The miniature M&ouml;ssbauer spectrometer MIMOS II is a component of the Athena science payload launched to Mars in 2003 on both Mars Exploration Rover missions. The instrument has two major components: (1) a rover-based electronics board that contains power supplies, a dedicated central processing unit, memory, and associated support electronics and (2) a sensor head that is mounted at the end of the instrument deployment device (IDD) for placement of the instrument in physical contact with soil and rock. The velocity transducer operates at a nominal frequency of 25 Hz and is equipped with two 57Co/Rh M&ouml;ssbauer sources. The reference source (5 mCi landed intensity), reference target (alpha-Fe2O3 plus alpha-Fe0), and PIN-diode detector are configured in transmission geometry and are internal to the instrument and used for its calibration. The analysis M&ouml;ssbauer source (150 mCi landed intensity) irradiates Martian surface materials with a beam diameter of 1.4 cm. The backscatter radiation is measured by four PIN-diode detectors. Physical contact with surface materials is sensed with a switch-activated contact plate. The contact plate and reference target are instrumented with temperature sensors. Assuming 18% Fe for Martian surface materials, experiment time is 6&ndash;12 hours during the night for quality spectra (i.e., good counting statistics); 1&ndash;2 hours is sufficient to identify and quantify the most abundant Fe-bearing phases. Data stored internal to the instrument for selectable return to Earth include M&ouml;ssbauer and pulse-height analysis spectra (512 and 256 channels, respectively) for each of the five detectors in up to 13 temperature intervals (65 M&ouml;ssbauer spectra), engineering data for the velocity transducer, and temperature measurements. The total data volume is 150 kB. The mass and power consumption are 500 g (400 g for the sensor head) and 2 W, respectively. The scientific measurement objectives of the M&ouml;ssbauer investigation are to obtain for rock, soil, and dust (1) the mineralogical identification of iron-bearing phases (e.g., oxides, silicates, sulfides, sulfates, and carbonates), (2) the quantitative measurement of the distribution of iron among these iron-bearing phases (e.g., the relative proportions of iron in olivine, pyroxenes, ilmenite, and magnetite in a basalt), (3) the quantitative measurement of the distribution of iron among its oxidation states (e.g., Fe2+, Fe3+, and Fe6+), and (4) the characterization of the size distribution of magnetic particles. Special geologic targets of the M&ouml;ssbauer investigation are dust collected by the Athena magnets and interior rock and soil surfaces exposed by the Athena Rock Abrasion Tool and by trenching with rover wheels

    2018 MAX-C/ExoMars Mission: The Orleans Mars-Analogue Rock Collection for Instrument Testing

    Get PDF
    International audienceIn order to reply to the exobiological goals of the 2018 MAX-C/ExoMars mission, the Orléans-OSUC analogue rock collection and database contains well characterised Mars analogue rocks and minerals for use in instrument testing and in situ missions

    Identification of morphological biosignatures in martian analogue field specimens using in situ planetary instrumentation

    Get PDF
    We have investigated how morphological biosignatures (i.e., features related to life) might be identified with an array of viable instruments within the framework of robotic planetary surface operations at Mars. This is the first time such an integrated lab-based study has been conducted that incorporates space-qualified instrumentation designed for combined in situ imaging, analysis, and geotechnics (sampling). Specimens were selected on the basis of feature morphology, scale, and analogy to Mars rocks. Two types of morphological criteria were considered: potential signatures of extinct life (fossilized microbial filaments) and of extant life (crypto-chasmoendolithic microorganisms). The materials originated from a variety of topical martian analogue localities on Earth, including impact craters, high-latitude deserts, and hydrothermal deposits. Our in situ payload included a stereo camera, microscope, M&ouml;ssbauer spectrometer, and sampling device (all space-qualified units from Beagle 2), and an array of commercial instruments, including a multi-spectral imager, an X-ray spectrometer (calibrated to the Beagle 2 instrument), a micro-Raman spectrometer, and a bespoke (custom-designed) X-ray diffractometer. All experiments were conducted within the engineering constraints of in situ operations to generate realistic data and address the practical challenges of measurement

    In-Situ and Experimental Evidence for Acidic Weathering of Rocks and Soils on Mars

    Get PDF
    Experimental data for alteration of synthetic Martian basalts at pH=0-1 indicate that chemical fractionations at low pH are vastly different from those observed during terrestrial weathering. Rock analyses from Gusev crater are well described by the relationships apparent from low pH experimental alteration data. A model for rock surface alteration is developed which indicates that a leached alteration zone is present on rock surfaces at Gusev. This zone is not chemically fractionated to a large degree from the underlying rock interior, indicating that the rock surface alteration process has occurred at low fluid-to-rock ratio. The geochemistry of natural rock surfaces analyzed by APXS is consistent with a mixture between adhering soil/dust and the leached alteration zone. The chemistry of rock surfaces analyzed after brushing with the RAT is largely representative of the leached alteration zone. The chemistry of rock surfaces analyzed after grinding with the RAT is largely representative of the interior of the rock, relatively unaffected by the alteration process occurring at the rock surface. Elemental measurements from the Spirit, Opportunity, Pathfinder and Viking 1 landing sites indicate that soil chemistry from widely separated locations is consistent with the low-pH, low fluid to rock ratio alteration relationships developed for Gusev rocks. Soils are affected principally by mobility of FeO and MgO, consistent with alteration of olivine-bearing basalt and subsequent precipitation of FeO and MgO bearing secondary minerals as the primary control on soil geochemistry

    Mineralogy and chemistry of cobbles at Meridiani Planum, Mars, investigated by the Mars Exploration Rover Opportunity

    Get PDF
    Numerous loose rocks with dimensions of a few centimeters to tens of centimeters and with no obvious physical relationship to outcrop rocks have been observed along the traverse of the Mars Exploration Rover Opportunity. To date, about a dozen of these rocks have been analyzed with Opportunity&rsquo;s contact instruments, providing information about elemental chemistry (Alpha Particle X‐ray Spectrometer), iron mineralogy and oxidation states (M&ouml;ssbauer Spectrometer) and texture (Microscopic Imager). These &ldquo;cobbles&rdquo; appear to be impact related, and three distinct groups can be identified on the basis of chemistry and mineralogy. The first group comprises bright fragments of the sulfate‐rich bedrock that are compositionally and texturally indistinguishable from outcrop rocks. All other cobbles are dark and are divided into two groups, referred to as the &ldquo;Barberton group&rdquo; and the &ldquo;Arkansas group,&rdquo; after the first specimen of each that was encountered by Opportunity. Barberton group cobbles are interpreted as meteorites with an overall chemistry and mineralogy consistent with a mesosiderite silicate clast composition. Arkansas group cobbles appear to be related to Meridiani outcrop and contain an additional basaltic component. They have brecciated textures, pointing to an impact‐related origin during which local bedrock and basaltic material were mixed
    corecore