15 research outputs found

    16th International Conference on Medical Image Computing and Computer Assisted Intervention

    No full text
    This book contains the full papers presented at the MICCAI 2013 workshop Computational Methods and Clinical Applications for Spine Imaging. The workshop brought together researchers representing several fields, such as Biomechanics, Engineering, Medicine, Mathematics, Physics and Statistic. The works included in this book present and discuss new trends in those fields, using several methods and techniques in order to address more efficiently different and timely applications involving signal and image acquisition, image processing and analysis, image segmentation, image registration and fusion, computer simulation, image based modelling, simulation and surgical planning, image guided robot assisted surgical and image based diagnosis

    Recent advances in computational methods and clinical applications for spine imaging

    No full text
    This book contains the full papers presented at the MICCAI 2014 workshop on Computational Methods and Clinical Applications for Spine Imaging. The workshop brought together scientists and clinicians in the field of computational spine imaging. The chapters included in this book present and discuss the new advances and challenges in these fields, using several methods and techniques in order to address more efficiently different and timely applications involving signal and image acquisition, image processing and analysis, image segmentation, image registration and fusion, computer simulation, image based modeling, simulation and surgical planning, image guided robot assisted surgical and image based diagnosis. The book also includes papers and reports from the first challenge on vertebra segmentation held at the workshop

    Automated detection and segmentation of thoracic lymph nodes from CT using 3D foveal fully convolutional neural networks

    No full text
    Background In oncology, the correct determination of nodal metastatic disease is essential for patient management, as patient treatment and prognosis are closely linked to the stage of the disease. The aim of the study was to develop a tool for automatic 3D detection and segmentation of lymph nodes (LNs) in computed tomography (CT) scans of the thorax using a fully convolutional neural network based on 3D foveal patches. Methods The training dataset was collected from the Computed Tomography Lymph Nodes Collection of the Cancer Imaging Archive, containing 89 contrast-enhanced CT scans of the thorax. A total number of 4275 LNs was segmented semi-automatically by a radiologist, assessing the entire 3D volume of the LNs. Using this data, a fully convolutional neuronal network based on 3D foveal patches was trained with fourfold cross-validation. Testing was performed on an unseen dataset containing 15 contrast-enhanced CT scans of patients who were referred upon suspicion or for staging of bronchial carcinoma. Results The algorithm achieved a good overall performance with a total detection rate of 76.9% for enlarged LNs during fourfold cross-validation in the training dataset with 10.3 false-positives per volume and of 69.9% in the unseen testing dataset. In the training dataset a better detection rate was observed for enlarged LNs compared to smaller LNs, the detection rate for LNs with a short-axis diameter (SAD) >= 20 mm and SAD 5-10 mm being 91.6% and 62.2% (p < 0.001), respectively. Best detection rates were obtained for LNs located in Level 4R (83.6%) and Level 7 (80.4%). Conclusions The proposed 3D deep learning approach achieves an overall good performance in the automatic detection and segmentation of thoracic LNs and shows reasonable generalizability, yielding the potential to facilitate detection during routine clinical work and to enable radiomics research without observer-bias
    corecore