14 research outputs found
Bifunctional ultraviolet/ultrasound responsive composite TiO2/polyelectrolyte microcapsules
Designing and fabricating multifunctional microcapsules are of considerable interest in both academic and industrial research aspects. This work reports an innovative approach to fabricate composite capsules with high UV and ultrasound responsive functionalities that can be used as external triggers for controlled release, yet with enhanced mechanical strength that can make them survive in a harsh environment. Needle-like TiO2 nanoparticles (NPs) were produced in situ into layer-by-layer (LbL) polyelectrolyte (PE) shells through the hydrolysis of titanium butoxide (TIBO). These rigid TiO2 NPs yielded the formed capsules with excellent mechanical strength, showing a free standing structure. A possible mechanism is proposed for the special morphology formation of the TiO2 NPs and their reinforcing effects. Synergistically, their response to UV and ultrasound was visualized via SEM, with the results showing an irreversible shell rapture upon exposure to either UV or ultrasound irradiation. As expected, the release studies revealed that the dextran release from the TiO2/PE capsules was both UV-dependent and ultrasound-dependent. Besides, the biocompatibility of the capsules with the incorporation of amorphous TiO2 NPs was confirmed by an MTT assay experiment. All these pieces of evidence suggested a considerable potential medicinal application of TiO2/PE capsules for controlled drug delivery
Hydrothermal Synthesis of Well-Defined Red-Emitting Eu-Doped GdPO4 Nanophosphors and Investigation of Their Morphology and Optical Properties
Rare-earth-doped GdPO4 nanoparticles have recently attracted much scientific interest due to the simultaneous optical and magnetic properties of these materials and their possible application in bio-imaging. Herein, we report the hydrothermal synthesis of GdPO4:Eu3+ nanoparticles by varying different synthesis parameters: pH, <Gd>:<P> molar ratio, and Eu3+ concentration. It turned out that the Eu3+ content in the synthesized nanoparticles had little effect on particle shape and morphology. The synthesis media pH, however, has showed a pronounced impact on particle size and distribution, i.e., the nanoparticle length can be adjusted from hundreds to tens of nanometers by changing the pH from 2 to 11, respectively. Increasing the <Gd>:<P> molar ratio resulted in a decrease in nanoparticle length and an increase in its width. The temperature-dependent measurements in the 77–500 K range revealed that the GdPO4:50%Eu3+ sample maintains half of its emission intensity, even at room temperature (TQ1/2 = 291 ± 19 K)
Hydrothermal Synthesis of Well-Defined Red-Emitting Eu-Doped GdPO<sub>4</sub> Nanophosphors and Investigation of Their Morphology and Optical Properties
Rare-earth-doped GdPO4 nanoparticles have recently attracted much scientific interest due to the simultaneous optical and magnetic properties of these materials and their possible application in bio-imaging. Herein, we report the hydrothermal synthesis of GdPO4:Eu3+ nanoparticles by varying different synthesis parameters: pH, : molar ratio, and Eu3+ concentration. It turned out that the Eu3+ content in the synthesized nanoparticles had little effect on particle shape and morphology. The synthesis media pH, however, has showed a pronounced impact on particle size and distribution, i.e., the nanoparticle length can be adjusted from hundreds to tens of nanometers by changing the pH from 2 to 11, respectively. Increasing the : molar ratio resulted in a decrease in nanoparticle length and an increase in its width. The temperature-dependent measurements in the 77–500 K range revealed that the GdPO4:50%Eu3+ sample maintains half of its emission intensity, even at room temperature (TQ1/2 = 291 ± 19 K)
Synthesis and Study of Thermoresponsive Amphiphilic Copolymers via RAFT Polymerization
Synthesis and study of well-defined thermoresponsive amphiphilic copolymers with various compositions were reported. Kinetics of the reversible addition-fragmentation chain transfer (RAFT) (co)polymerization of styrene (St) and oligo(ethylene glycol) methyl ether methacrylate (PEO5MEMA) was studied by size exclusion chromatography (SEC) and 1H NMR spectroscopy, which allows calculating not only (co)polymerization parameters but also gives valuable information on RAFT (co)polymerization kinetics, process control, and chain propagation. Molecular weight Mn and dispersity Đ of the copolymers were determined by SEC with triple detection. The detailed investigation of styrene and PEO5MEMA (co)polymerization showed that both monomers prefer cross-polymerization due to their low reactivity ratios (r1 2 p(St-co-PEO5MEMA) with various compositions is almost ideally statistical or azeotropic. The thermoresponsive properties of p(St-co-PEO5MEMA) copolymers in aqueous solutions as a function of different hydrophilic/hydrophobic substituent ratios were evaluated by measuring the changes in hydrodynamic parameters under applied temperature using the dynamic light scattering method (DLS)
Biosynthesis of Silver Nanoparticles Produced Using <i>Geobacillus</i> spp. Bacteria
Silver nanoparticles (AgNPs) are well known for their unique physical and chemical properties, which can be incorporated into a wide range of applications. The growing resistance of microorganisms to antimicrobial compounds promoted the use of AgNPs in antimicrobial therapy. AgNPs can be obtained using physical and chemical methods, but these technologies are highly unfriendly to nature and produce large amounts of side compounds (for example, sodium borohydride and N,N-dimethylformamide). Therefore, alternative technologies are required for obtaining AgNPs. This report focuses on the biosynthesis of silver nanoparticles through the reduction of Ag+ with the cell-free secretomes of four Geobacillus bacterial strains, namely, 18, 25, 95, and 612. Only a few studies that involved Geobacillus bacteria in the synthesis of metal nanoparticles, including AgNPs, have been reported to date. The silver nanoparticles synthesized through bio-based methods were characterized using UV–Vis spectroscopy, scanning electron microscopy (SEM), dynamic light scattering (DLS), and zeta potential measurements. UV–Vis spectroscopy showed a characteristic absorbance peak at 410–425 nm, indicative of AgNPs. SEM analysis confirmed that most nanoparticles were spherical. DLS analysis showed that the sizes of the obtained AgNPs were widely distributed, with the majority less than 100 nm in diameter, while the zeta potential values ranged from −25.7 to −31.3 mV and depended on the Geobacillus spp. strain
Biocompatible Upconverting Nanoprobes for Dual-Modal Imaging and Temperature Sensing
The demand for multimodal nanomaterials has intensified
in recent
years driven by the need for ultrasensitive bioimaging probes and
accurate temperature monitoring in biological objects. Among the different
multimodal nanomaterials that have been extensively studied in the
past decade, upconverting nanoparticles are among the most promising.
In this paper, we report the synthesis of upconverting nanoparticles
with complex core–shell compositions, capable of being excited
by 808 or 980 nm laser irradiation and exhibiting a good MRI response.
The synthesized nanoparticles also demonstrated high colloidal stability
in both aqueous and biological media as well as temperature-sensing
capabilities, including the physiological range. Furthermore, the
upconversion nanoparticles exhibited significantly lower cytotoxicity
for HEK293T cells than the commercially available MRI contrast agent
Gd-DTPA
Cross-polarization with magic-angle spinning kinetics and impedance spectroscopy study of proton mobility, local disorder, and thermal equilibration in hydrogen-bonded poly(methacrylic acid)
The 1H–13C cross-polarization with magic-angle spinning (CP MAS) kinetics was studied in poly(methacrylic acid) (PMAA) having the purpose to track the links between the local order in the main chain and the proton dynamics in peripheral hydrogen bond networks. The experimental CP MAS kinetic curves were analyzed applying the models of isotropic and anisotropic spin-diffusion with thermal equilibration. The fractal dimension Dp ≈ 3 was deduced that indicates that PMAA behaves as an isotropic 3D-system. No proton conductivity in the neat PMAA was deduced from the impedance spectroscopy data analyzing the frequency dependences of the complex dielectric permittivity. The value of local order parameter S = 0.70 for CH2 in PMAA occupies an intermediate position between 0.63 and 0.85 deduced for CH2 sites in the main chains of poly(vinyl phosphonic acid) and poly(2-hydroxyethyl methacrylate), that is, the true proton conductor and the polymer that contains the H-bond network, however, no proton conductivity, respectively.</p