17 research outputs found

    Personal model-assisted identification of NAD(+) and glutathione metabolism as intervention target in NAFLD

    Get PDF
    To elucidate the molecular mechanisms underlying non-alcoholic fatty liver disease (NAFLD), we recruited 86 subjects with varying degrees of hepatic steatosis (HS). We obtained experimental data on lipoprotein fluxes and used these individual measurements as personalized constraints of a hepatocyte genome-scale metabolic model to investigate metabolic differences in liver, taking into account its interactions with other tissues. Our systems level analysis predicted an altered demand for NAD(+) and glutathione (GSH) in subjects with high HS. Our analysis and metabolomic measurements showed that plasma levels of glycine, serine, and associated metabolites are negatively correlated with HS, suggesting that these GSH metabolism precursors might be limiting. Quantification of the hepatic expression levels of the associated enzymes further pointed to altered de novo GSH synthesis. To assess the effect of GSH and NAD(+) repletion on the development of NAFLD, we added precursors for GSH and NAD(+) biosynthesis to the Western diet and demonstrated that supplementation prevents HS in mice. In a proof-of-concept human study, we found improved liver function and decreased HS after supplementation with serine (a precursor to glycine) and hereby propose a strategy for NAFLD treatment.Peer reviewe

    Personal model-assisted identification of NAD+ and glutathione metabolism as intervention target in NAFLD

    Get PDF
    To elucidate the molecular mechanisms underlying non-alcoholic fatty liver disease (NAFLD), we recruited 86 subjects with varying degrees of hepatic steatosis (HS). We obtained experimental data on lipoprotein fluxes and used these individual measurements as personalized constraints of a hepatocyte genome-scale metabolic model to investigate metabolic differences in liver, taking into account its interactions with other tissues. Our systems level analysis predicted an altered demand for NAD+ and glutathione (GSH) in subjects with high HS. Our analysis and metabolomic measurements showed that plasma levels of glycine, serine, and associated metabolites are negatively correlated with HS, suggesting that these GSH metabolism precursors might be limiting. Quantification of the hepatic expression levels of the associated enzymes further pointed to altered de novo GSH synthesis. To assess the effect of GSH and NAD+ repletion on the development of NAFLD, we added precursors for GSH and NAD+ biosynthesis to the Western diet and demonstrated that supplementation prevents HS in mice. In a proof-of-concept human study, we found improved liver function and decreased HS after supplementation with serine (a precursor to glycine) and hereby propose a strategy for NAFLD treatment

    Glucosylceramide synthase deficiency in the heart compromises ÎČ1-adrenergic receptor trafficking

    Get PDF
    Aims: Cardiac injury and remodelling are associated with the rearrangement of cardiac lipids. Glycosphingolipids are membrane lipids that are important for cellular structure and function, and cardiac dysfunction is a characteristic of rare monogenic diseases with defects in glycosphingolipid synthesis and turnover. However, it is not known how cardiac glycosphingolipids regulate cellular processes in the heart. The aim of this study is to determine the role of cardiac glycosphingolipids in heart function.Methods and results: Using human myocardial biopsies, we showed that the glycosphingolipids glucosylceramide and lactosylceramide are present at very low levels in non-ischaemic human heart with normal function and are elevated during remodelling. Similar results were observed in mouse models of cardiac remodelling. We also generated mice with cardiomyocyte-specific deficiency in Ugcg, the gene encoding glucosylceramide synthase (hUgcg-/- mice). In 9- to 10-week-old hUgcg-/- mice, contractile capacity in response to dobutamine stress was reduced. Older hUgcg-/- mice developed severe heart failure and left ventricular dilatation even under baseline conditions and died prematurely. Using RNA-seq and cell culture models, we showed defective endolysosomal retrograde trafficking and autophagy in Ugcg-deficient cardiomyocytes. We also showed that responsiveness to ÎČ-adrenergic stimulation was reduced in cardiomyocytes from hUgcg-/- mice and that Ugcg knockdown suppressed the internalization and trafficking of ÎČ1-adrenergic receptors.Conclusions: Our findings suggest that cardiac glycosphingolipids are required to maintain ÎČ-adrenergic signalling and contractile capacity in cardiomyocytes and to preserve normal heart function.</p

    Localised Lipid Accumulation Detected in Infarcted Mouse Heart Tissue using ToF-SIMS

    No full text
    Cardiovascular disease (CVD) is largely related to complications from atherosclerotic disease such as myocardial infarction (MI) and ischemic stroke and accounts for more than 30% of overall global mortality. Understanding the biochemical changes that occur in cardiac tissue following myocardial infarction is critical for clarifying the mechanisms underlying the impaired heart function seen after a myocardial infarction. Lipids have been shown to accumulate in ischemic cardiac tissue following an infarction. Recent data indicate that this cardiac lipid accumulation induces apoptosis and loss of muscle cells during the post-infarction period, which aggravate the functional impairment in the heart and limit its adaptive capacity for compensatory remodelling. It is therefore important to identify the lipids and molecular mechanisms that induce these destructive responses. In this study, the spatial distribution of lipids in mouse cardiac tissue after surgically induced infarction were identified using ToF-SIMS imaging with a gas cluster ion beam (GCIB). The benefits of frozen hydrated analysis versus freeze dried sample preparation were assessed as was the suitability of different multivariate analysis techniques for identification of localised chemical changes in the tissue. Results show that differences in intensity of the peaks in the mass spectrum corresponding to different lipids can be detected between the infarcted region of the heart and normal tissue region as well as specific accumulation of acyl-carnitine species at the boundary of the damaged region. Different spatial distributions of lipids were detected in both positive and negative ion mode providing insights into the changes in lipid metabolism following infarction. The ToF-SIMS results were compared with conventional lipidomics where although many lipid classes show similar changes between infarcted and non-infarcted hearts the ToF-SIMS data revealed differences due to salt adduct formation and most importantly where the changes in lipid signal are highly localised at the border between the infarcted and non-infarcted regions of the heart

    Metabolic network-based stratification of hepatocellular carcinoma reveals three distinct tumor subtypes

    No full text
    Hepatocellular carcinoma (HCC) is one of the most frequent forms of liver cancer, and effective treatment methods are limited due to tumor heterogeneity. There is a great need for comprehensive approaches to stratify HCC patients, gain biological insights into subtypes, and ultimately identify effective therapeutic targets. We stratified HCC patients and characterized each subtype using transcriptomics data, genome-scale metabolic networks and network topology/controllability analysis. This comprehensive systems-level analysis identified three distinct subtypes with substantial differences in metabolic and signaling pathways reflecting at genomic, transcriptomic, and proteomic levels. These subtypes showed large differences in clinical survival associated with altered kynurenine metabolism, WNT/beta-catenin-associated lipid metabolism, and PI3K/AKT/mTOR signaling. Integrative analyses indicated that the three subtypes rely on alternative enzymes (e.g., ACSS1/ACSS2/ACSS3, PKM/PKLR, ALDOB/ALDOA, MTHFD1L/MTHFD2/MTHFD1) to catalyze the same reactions. Based on systems-level analysis, we identified 8 to 28 subtype-specific genes with pivotal roles in controlling the metabolic network and predicted that these genes may be targeted for development of treatment strategies for HCC subtypes by performing in silico analysis. To validate our predictions, we performed experiments using HepG2 cells under normoxic and hypoxic conditions and observed opposite expression patterns between genes expressed in high/moderate/low-survival tumor groups in response to hypoxia, reflecting activated hypoxic behavior in patients with poor survival. In conclusion, our analyses showed that the heterogeneous HCC tumors can be stratified using a metabolic network-driven approach, which may also be applied to other cancer types, and this stratification may have clinical implications to drive the development of precision medicine.QC 20190423</p

    Antioxidant tempol supresses heart cytosolic phospholipase A2α stimulated by chronic intermittent hypoxia

    No full text
    Adaptation to chronic intermittent hypoxia (CIH) is associated with reactive oxygen species (ROS) generation implicated in the improved cardiac tolerance against acute ischemia/reperfusion injury. Phospholipases A2 (PLA2s) play an important role in cardiomyocyte phospholipid metabolism influencing membrane homeostasis. Here we aimed to determine the effect of CIH (7000 m, 8h/day, 5 weeks) on the expression of cytosolic PLA2 (cPLA2α), its phosphorylated form (p-cPLA2α), calcium-independent (iPLA2) and secretory (sPLA2IIA) at protein and mRNA levels as well fatty acids (FA) profile in left ventricular myocardium of adult male Wistar rats. Chronic administration of antioxidant tempol was used to verify the ROS involvement in CIH effect on PLA2s expression and phospholipid FA remodeling. While CIH did not affect PLA2s mRNA levels, it increased the total cPLA2α protein in cytosol and membranes (by 191% and 38%, respectively) and p-cPLA2α (by 23%) in membranes. On the other hand, both iPLA2 and sPLA2IIA were down-regulated by CIH. CIH further decreased phospholipid n-6 polyunsaturated FA (PUFA) and increased n-3 PUFA proportion. Tempol treatment prevented only CIH-induced cPLA2α up-regulation and its phosphorylation on SerThe accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Pyruvate kinase L/R is a regulator of lipid metabolism and mitochondrial function

    No full text
    The pathogenesis of non-alcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC) has been associated with altered expression of liver-specific genes including pyruvate kinase liver and red blood cell (PKLR), patatin-like phospholipase domain containing 3 (PNPLA3) and proprotein convertase subtilisin/kexin type 9 (PCSK9). Here, we inhibited and overexpressed the expression of these three genes in HepG2 cells, generated RNA-seq data before and after perturbation and revealed the altered global biological functions with the modulation of these genes using integrated network (IN) analysis. We found that modulation of these genes effects the total triglycerides levels within the cells and viability of the cells. Next, we generated IN for HepG2 cells, identified reporter transcription factors based on IN and found that the modulation of these genes affects key metabolic pathways associated with lipid metabolism (steroid biosynthesis, PPAR signalling pathway, fatty acid synthesis and oxidation) and cancer development (DNA replication, cell cycle and p53 signalling) involved in the progression of NAFLD and HCC. Finally, we observed that inhibition of PKLR lead to decreased glucose uptake and decreased mitochondrial activity in HepG2 cells. Hence, our systems level analysis indicated that PKLR can be targeted for development efficient treatment strategy for NAFLD and HCC

    Plin2-deficiency reduces lipophagy and results in increased lipid accumulation in the heart

    No full text
    Myocardial dysfunction is commonly associated with accumulation of cardiac lipid droplets (LDs). Perilipin 2 (Plin2) is a LD protein that is involved in LD formation, stability and trafficking events within the cell. Even though Plin2 is highly expressed in the heart, little is known about its role in myocardial lipid storage. A recent report shows that cardiac overexpression of Plin2 result in massive myocardial steatosis suggesting that Plin2 stabilizes LDs. In this study, we hypothesized that deficiency in Plin2 would result in reduced myocardial lipid storage. In contrast to our hypothesis, we found increased accumulation of triglycerides in hearts, and specifically in cardiomyocytes, from Plin2−/− mice. Although Plin2−/− mice had markedly enhanced lipid levels in the heart, they had normal heart function under baseline conditions and under mild stress. However, after an induced myocardial infarction, stroke volume and cardiac output were reduced in Plin2−/− mice compared with Plin2+/+ mice. We further demonstrated that the increased triglyceride accumulation in Plin2-deficient hearts was caused by altered lipophagy. Together, our data show that Plin2 is important for proper hydrolysis of LDs
    corecore