3 research outputs found
Fairness in multistakeholder recommendation platforms
Lâobjet dâĂ©tude de cette thĂšse est le classement dâobjets potentiellement pertinents en rĂ©ponse Ă une requĂȘte dâinformation, par exemple lors de lâutilisation dâun moteur de recherche ou lors de la recommandation de contenu en ligne. Un tel classement met en contact deux groupes:les utilisateurs en quĂȘte dâinformations pertinentes, mais aussi les producteurs de contenu, dont lâobjectif est de faire voir lâinformation produite. Par exemple lors dâune recherche de restaurants,lâintĂ©rĂȘt de lâutilisateur est de se voir proposer des restaurants de qualitĂ© et de passer une bonne soirĂ©e, tandis que lâintĂ©rĂȘt des restaurateurs sera dâĂȘtre vu par bon nombre de personnes, afin dâattirer de la clientĂšle. Les objets Ă classer entrent ainsi en compĂ©tition les uns avec les autres et il est dans lâintĂ©rĂȘt de la plateforme gĂ©nĂ©rant les classements, de veiller Ă ce que la visibilitĂ© allouĂ©e aux objets soit Ă©quitablement rĂ©partie. De toute Ă©vidence il existe un grand nombre de possibilitĂ©s pour dĂ©finir ce que signifie Ă©quitablement et aucune dâentre elles ne fera lâunanimitĂ©.Par consĂ©quent dans cette thĂšse la dĂ©finition dâĂ©quitĂ© est prise comme un paramĂštre reprĂ©sentĂ© par un vecteur de mĂ©rite, qui dĂ©termine la proportion avec laquelle la visibilitĂ© doit ĂȘtre rĂ©partie parmi les objets classĂ©s dans une situation Ă©quitable. Cela rendra notre mĂ©thode applicable Ă un large Ă©ventail de dĂ©finitions possibles.DĂšs lors deux choses apparaissent. PremiĂšrement il nâexiste pas en gĂ©nĂ©ral de classement,qui soit Ă©quitable au sens de la proportionnalitĂ© de la visibilitĂ© au mĂ©rite. Il est donc nĂ©cessaire de produire plusieurs classements, qui se compensent les uns les autres de façon Ă donner, en moyenne, une visibilitĂ© Ă©quitable aux objets. DeuxiĂšmement ces classements ne donnent en gĂ©nĂ©ral pas une utilitĂ© maximale pour lâutilisateur. En effet pour garantir lâĂ©quitĂ©, des objets moins pertinents pourraient lui ĂȘtre montrĂ©s. Ces deux objectifs, Ă©quitĂ© et utilitĂ©, ne sont donc pas optimisables simultanĂ©ment.La contribution de cette thĂšse consiste en lâĂ©laboration de mĂ©thodes permettant de dĂ©terminer des sĂ©quences de classements optimales dans le sens de Pareto, câest-Ă -dire telles quâil ne soit pas possible dâamĂ©liorer lâun des deux objectifs sans dĂ©tĂ©riorer lâautre. LâidĂ©e est que cela permette Ă un preneur de dĂ©cision qualifiĂ© de choisir, en connaissance de cause, un compromis adĂ©quat entre utilitĂ© de lâutilisateur et Ă©quitĂ© entre les objets.La dĂ©termination de ces sĂ©quences optimales est accomplie via lâintroduction dâun objet gĂ©omĂ©trique, dâun polytope baptisĂ© expohĂ©dron. Ce polytope exprime exprime lâensemble des visibilitĂ©s moyennes atteignables avec des sĂ©quences de classement et constitue ainsi un bon espace de dĂ©cision Ă la fois pour lâĂ©quitĂ© et pour lâutilitĂ©. LâexpohĂ©dron permet de calculer les sĂ©quences par la seule utilisation de constructions gĂ©omĂ©triques en son intĂ©rieur, mathĂ©matiquement exactes, et ce de façon significativement plus rapide que ne le permettaient de faire des mĂ©thodes prĂ©cĂ©dentes basĂ©es sur des programmes linĂ©aires. De plus la mĂ©thode proposĂ©e est appicable Ă deux grandes gammes de modĂšles de visibilitĂ© incluant les modĂšles plus connus sous leur nom anglais Position Based Model (PBM) et Dynamic Bayesian Network (DBN), ce dernier plus complexe ne permettant pas lâapplication de programmes linĂ©aires.The object of study of this thesis is the ranking of potentially relevant objects in response toan information request, for example when using a search engine or in the case of online con-tent recommendation. Such a ranking brings together two groups: users searching for relevantinformation, and content producers, whose goal is to make the produced information visible.For example, when searching for restaurants, the user is interested in seeing good restaurants,while the interest of the restaurant owners is to be seen by many people, in order to attract cus-tomers. The objects to be ranked are thus competing with each other and it is in the interestof the platform generating the rankings to ensure that the exposure allocated to the objects isfairly distributed. Obviously there are many possibilities of defining what fair means and noneof them will be unanimously agreed upon. Therefore in this thesis the definition of fairness istaken as a parameter represented by a vector of merit, which determines the proportion withwhich visibility should be distributed amongst the items. This will make our method applicableto a wide range of possible definitions.Two things then become apparent. First, there does not in general exists ranking that is fairin the sense of proportionality of exposure to merit. It is therefore necessary to produce severalrankings that compensate each other in order to give, on average, fair exposures to the items.Secondly, these rankings do not generally give maximum utility to the user. Indeed, to guaranteefairness, less relevant objects could potentially be shown to him. These two objectives, fairnessand utility, are thus not simultaneously optimizable.The contribution of this thesis is to develop methods to determine Pareto optimal rankingsequences, i.e. such that it is not possible to improve one of the two objectives without deteri-orating the other. The idea is that this would make it possible for a qualified decision maker tomake an informed choice about an adequate trade-off between user utility and fairness amongstitems.The determination of these optimal sequences is accomplished via the introduction of a ge-ometric object, a polytope named expohedron. This polytope expresses the set of average expo-sures attainable with ranking sequences and is therefore a good decision space for both fairnessand utility. The expohedron makes it possible to compute these optimal ranking sequences us-ing only mathematically exact geometric constructions inside it, and this in a significantly fasterway than previous methods based on linear programming. Moreover, the proposed method isapplicable to two large classes of exposure models including Position Based Model (PBM) andDynamic Bayesian Network (DBN) models to which linear programming is not applicable
Introducing the Expohedron for Efficient Pareto-optimal Fairness-Utility Amortizations in Repeated Rankings
International audienceWe consider the problem of computing a sequence of rankings that maximizes consumer-side utility while minimizing producer-side individual unfairness of exposure. While prior work has addressed this problem using linear or quadratic programs on bistochastic matrices, such approaches, relying on Birkhoff-von Neumann (BvN) decompositions, are too slow to be implemented at large scale.In this paper we introduce a geometrical object, a polytope that we call \emph{expohedron}, whose points represent all achievable exposures of items for a Position Based Model (PBM). We exhibit some of its properties and lay out a Carathéodory decomposition algorithm with complexity able to express any point inside the expohedron as a convex sum of at most vertices, where is the number of items to rank. Such a decomposition makes it possible to express any feasible target exposure as a distribution over at most rankings. Furthermore we show that we can use this polytope to recover the whole Pareto frontier of the multi-objective fairness-utility optimization problem, using a simple geometrical procedure with complexity . Our approach compares favorably to linear or quadratic programming baselines in terms of algorithmic complexity and empirical runtime and is applicable to any merit that is a non-decreasing function of item relevance. Furthermore our solution can be expressed as a distribution over only permutations, instead of the achieved with BvN decompositions. We perform experiments on synthetic and real-world datasets, confirming our theoretical results
Pareto-Optimal Fairness-Utility Amortizations in Rankings with a DBN Exposure Model
International audienceIn recent years, it has become clear that rankings delivered in many areas need not only be useful to the users but also respect fairness of exposure for the item producers.We consider the problem of finding ranking policies that achieve a Pareto-optimal tradeoff between these two aspects. Several methods were proposed to solve it; for instance a popular one is to use linear programming with a Birkhoffvon Neumann decomposition. These methods, however, are based on a classical Position Based exposure Model (PBM), which assumes independence between the items (hence the exposure only depends on the rank). In many applications, this assumption is unrealistic and the community increasingly moves towards considering other models that include dependences, such as the Dynamic Bayesian Network (DBN) exposure model. For such models, computing (exact) optimal fair ranking policies remains an open question. In this paper, we answer this question by leveraging a new geometrical method based on the so-called expohedron proposed recently for the PBM (Kletti et al., WSDMâ22).We lay out the structure of a new geometrical object (the DBN-expohedron), and propose for it a CarathĂ©odory decomposition algorithm of complexity \upomicron(n3), where n is the number of documents to rank. Such an algorithm enables expressing any feasible expected exposure vector as a distribution over at most n rankings; furthermore we show that we can compute the whole set of Pareto-optimal expected exposure vectors with the same complexity \upomicron(n3). Our work constitutes the first exact algorithm able to efficiently find a Pareto-optimal distribution of rankings. It is applicable to a broad range of fairness notions, including classical notions of meritocratic and demographic fairness. We empirically evaluate our method on the TREC2020 and MSLR datasets and compare it to several baselines in terms of Paretooptimality and speed