21 research outputs found

    Bibliometric analysis and evidence of clinical efficacy and safety of digital pills

    Get PDF
    Objectives: Digital pills are new technologies that aim to improve healthcare by increasing medication adherence. The aim of the work was a bibliometric analysis of clinical studies of digital pills and an assessment of the level of evidence of their effectiveness, safety, and prospects for the future.Materials and Methods: The studies were conducted using online databases such as ClinicalTrials.gov, Dimensions, and Web of Science for the period January 2012 to July 2022. The VOSviewer tool for building and visualizing bibliometric networks was used.Results: Bibliometric analysis of the scientific literature revealed that over the past 10 years, the number of publications about digital pills has noticeably increased, which indicates the increasing importance of this field of knowledge. The leading positions in this area are occupied by scientists from the United States, the United Kingdom, and India. Sources of financial support for authors of publications in the field of digital pills are funds from leading developer companies, budget allocations, and funds from non-commercial organizations. Public-private partnerships are an important path to develop and implement digital pills. The four main clusters of digital pill studies were highlighted and visualized: efficacy and safety analysis for serious mental disorders; treatment and costs of tuberculosis therapy; features of the treatment of diabetes, cardiovascular diseases, and AIDS; and usage monitoring. Available publications demonstrate the efficacy potential and safety of digital pills. Nevertheless, the effects of digital pills have not yet been fully studied.Conclusion: Priority areas for future research are further randomized controlled clinical trials and meta-analyses, which are necessary for a high level (I level) of evidence for therapeutic applications of digital pills, as well as pharmacoeconomic studies

    The promise of digital healthcare technologies

    Get PDF
    Digital health technologies have been in use for many years in a wide spectrum of healthcare scenarios. This narrative review outlines the current use and the future strategies and significance of digital health technologies in modern healthcare applications. It covers the current state of the scientific field (delineating major strengths, limitations, and applications) and envisions the future impact of relevant emerging key technologies. Furthermore, we attempt to provide recommendations for innovative approaches that would accelerate and benefit the research, translation and utilization of digital health technologies

    Impacts of biomedical hashtag-based Twitter campaign: #DHPSP utilization for promotion of open innovation in digital health, patient safety, and personalized medicine

    Get PDF
    The open innovation hub Digital Health and Patient Safety Platform (DHPSP) was recently established with the purpose to invigorate collaborative scientific research and the development of new digital products and personalized solutions aiming to improve human health and patient safety. In this study, we evaluated the effectiveness of a Twitter-based campaign centered on using the hashtag #DHPSP to promote the visibility of the DHPSP initiative. Thus, tweets containing #DHPSP were monitored for five weeks for the period 20.10.2020–24.11.2020 and were analyzed with Symplur Signals (social media analytics tool). In the study period, a total of 11,005 tweets containing #DHPSP were posted by 3020 Twitter users, generating 151,984,378 impressions. Analysis of the healthcare stakeholder-identity of the Twitter users who used #DHPSP revealed that the most of participating user accounts belonged to individuals or doctors, with the top three user locations being the United States (501 users), the United Kingdom (155 users), and India (121 users). Analysis of co-occurring hashtags and the full text of the posted tweets further revealed that the major themes of attention in the #DHPSP Twitter-community were related to the coronavirus disease 2019 (COVID-19), medicine and health, digital health technologies, and science communication in general. Overall, these results indicate that the #DHPSP initiative achieved high visibility and engaged a large body of Twitter users interested in the DHPSP focus area. Moreover, the conducted campaign resulted in an increase of DHPSP member enrollments and website visitors, and new scientific collaborations were formed. Thus, Twitter campaigns centered on a dedicated hashtag prove to be a highly efficient tool for visibility-promotion, which could be successfully utilized by healthcare-related open innovation platforms or initiatives

    Tort Liability - Charitable Institutions

    Get PDF

    Chemical Carcinogenesis : Syntheses of 2,7-Bis- (Acetamido) Fluorenes with Increased Molecular Thickness by 9-Substitution

    No full text
    Author Institution: Department of Chemistry, Kent State University, Kent, Ohio 44240The series: 9-methyl, 9-isopropyl, 9-cyclohexyl, 9,9-dimethyl, 9,9-diethyl, and the unsubstituted parent 2,7-bis (acetamido) fluorene were synthesized from the corresponding 9-substituted fluorenes. The two routes employed consisted of either (1) dinitration, reduction to the diamine, and diacetylation, or (2) Friedel-Crafts diacylation, then rearrangement via the Schmidt reaction. This provides a series of compounds of use in comparing relative carcinogenicity with changes in chemical reactivity as a function of increased steric hindrance due to altered molecular "thickness.

    Digital Pills with Ingestible Sensors: Patent Landscape Analysis

    No full text
    The modern healthcare system is directly related to the development of digital health tools and solutions. Pills with digital sensors represent a highly innovative class of new pharmaceuticals. The aim of this work was to analyze the patent landscape and to systematize the main trends in patent protection of digital pills with ingestible sensors worldwide; accordingly, to identify the patenting leaders as well as the main prevailing areas of therapy for patent protection, and the future perspectives in the field. In July 2022, a search was conducted using Internet databases, such as the EPO, USPTO, FDA and the Lens database. The patent landscape analysis shows an increase in the number of patents related to digital pills with ingestible sensors for mobile clinical monitoring, smart drug delivery, and endoscopy diagnostics. The leaders in the number of patents issued are the United States, the European Patent Office, Canada, Australia, and China. The following main areas of patenting digital pills with ingestible sensors were identified: treatment in the field of mental health; HIV/AIDS; pain control; cardiovascular diseases; diabetes; gastroenterology (including hepatitis C); oncology; tuberculosis; and transplantology. The development of scientific and practical approaches towards the implementation of effective and safe digital pills will improve treatment outcomes, increase compliance, reduce hospital stays, provide mobile clinical monitoring, have a positive impact on treatment costs and will contribute to increased patient safety

    Virtual and Augmented Reality Applications in Medicine: Analysis of the Scientific Literature.

    Get PDF
    BACKGROUND Virtual reality (VR) and augmented reality (AR) have recently become popular research themes. However, there are no published bibliometric reports that have analyzed the corresponding scientific literature in relation to the application of these technologies in medicine. OBJECTIVE We used a bibliometric approach to identify and analyze the scientific literature on VR and AR research in medicine, revealing the popular research topics, key authors, scientific institutions, countries, and journals. We further aimed to capture and describe the themes and medical conditions most commonly investigated by VR and AR research. METHODS The Web of Science electronic database was searched to identify relevant papers on VR research in medicine. Basic publication and citation data were acquired using the "Analyze" and "Create Citation Report" functions of the database. Complete bibliographic data were exported to VOSviewer and Bibliometrix, dedicated bibliometric software packages, for further analyses. Visualization maps were generated to illustrate the recurring keywords and words mentioned in the titles and abstracts. RESULTS The analysis was based on data from 8399 papers. Major research themes were diagnostic and surgical procedures, as well as rehabilitation. Commonly studied medical conditions were pain, stroke, anxiety, depression, fear, cancer, and neurodegenerative disorders. Overall, contributions to the literature were globally distributed with heaviest contributions from the United States and United Kingdom. Studies from more clinically related research areas such as surgery, psychology, neurosciences, and rehabilitation had higher average numbers of citations than studies from computer sciences and engineering. CONCLUSIONS The conducted bibliometric analysis unequivocally reveals the versatile emerging applications of VR and AR in medicine. With the further maturation of the technology and improved accessibility in countries where VR and AR research is strong, we expect it to have a marked impact on clinical practice and in the life of patients

    Research on Digital Technology Use in Cardiology:Bibliometric Analysis

    No full text
    BACKGROUND: Digital technology uses in cardiology have become a popular research focus in recent years. However, there has been no published bibliometric report that analyzed the corresponding academic literature in order to derive key publishing trends and characteristics of this scientific area. OBJECTIVE: We used a bibliometric approach to identify and analyze the academic literature on digital technology uses in cardiology, and to unveil popular research topics, key authors, institutions, countries, and journals. We further captured the cardiovascular conditions and diagnostic tools most commonly investigated within this field. METHODS: The Web of Science electronic database was queried to identify relevant papers on digital technology uses in cardiology. Publication and citation data were acquired directly from the database. Complete bibliographic data were exported to VOSviewer, a dedicated bibliometric software package, and related to the semantic content of titles, abstracts, and keywords. A term map was constructed for findings visualization. RESULTS: The analysis was based on data from 12,529 papers. Of the top 5 most productive institutions, 4 were based in the United States. The United States was the most productive country (4224/12,529, 33.7%), followed by United Kingdom (1136/12,529, 9.1%), Germany (1067/12,529, 8.5%), China (682/12,529, 5.4%), and Italy (622/12,529, 5.0%). Cardiovascular diseases that had been frequently investigated included hypertension (152/12,529, 1.2%), atrial fibrillation (122/12,529, 1.0%), atherosclerosis (116/12,529, 0.9%), heart failure (106/12,529, 0.8%), and arterial stiffness (80/12,529, 0.6%). Recurring modalities were electrocardiography (170/12,529, 1.4%), angiography (127/12,529, 1.0%), echocardiography (127/12,529, 1.0%), digital subtraction angiography (111/12,529, 0.9%), and photoplethysmography (80/12,529, 0.6%). For a literature subset on smartphone apps and wearable devices, the Journal of Medical Internet Research (20/632, 3.2%) and other JMIR portfolio journals (51/632, 8.0%) were the major publishing venues. CONCLUSIONS: Digital technology uses in cardiology target physicians, patients, and the general public. Their functions range from assisting diagnosis, recording cardiovascular parameters, and patient education, to teaching laypersons about cardiopulmonary resuscitation. This field already has had a great impact in health care, and we anticipate continued growth
    corecore