8 research outputs found

    Severe acute necrotizing pancreatitis associated with lipoprotein lipase deficiency in childhood

    Get PDF
    An 11-year-old girl with lipoprotein lipase deficiency experienced recurring episodes of abdominal pain. She initially underwent appendectomy for suspected appendicitis; however, the appendix was normal. Pancreatitis was subsequently identified as the cause of her pain

    Functional hyperactivity of hepatic glutamate dehydrogenase as a cause of the hyperinsulinism/hyperammonemia syndrome: effect of treatment

    Get PDF
    OBJECTIVE: The combination of persistent hyperammonemia and hypoketotic hypoglycemia in infancy presents a diagnostic challenge. Investigation of the possible causes and regulators of the ammonia and glucose disposal may result in a true diagnosis and predict an optimum treatment. PATIENT: Since the neonatal period, a white girl had been treated for hyperammonemia and postprandial hypoglycemia with intermittent hyperinsulinism. Her blood level of ammonia varied from 100 to 300 micromol/L and was independent of the protein intake. METHODS: Enzymes of the urea cycle as well as glutamine synthetase and glutamate dehydrogenase (GDH) were assayed in liver tissue and/or lymphocytes. RESULTS: The activity of hepatic GDH was 874 nmol/(min.mg protein) (controls: 472-938). Half-maximum inhibition by guanosine triphosphate was reached at a concentration of 3.9 micromol/L (mean control values:.32). The ratio of plasma glutamine/blood ammonia was unusually low. Oral supplements with N-carbamylglutamate resulted in a moderate decrease of the blood level of ammonia. The hyperinsulinism was successfully treated with diazoxide. CONCLUSION: A continuous conversion of glutamate to 2-oxoglutarate causes a depletion of glutamate needed for the synthesis of N-acetylglutamate, the catalyst of the urea synthesis starting with ammonia. In addition, the shortage of glutamate may lead to an insufficient formation of glutamine by glutamine synthetase. As GDH stimulates the release of insulin, the concomitant hyperinsulinism can be explained. This disorder should be considered in every patient with postprandial hypoglycemia and diet-independent hyperammonemia

    Genetic basis of hyperlysinemia

    Get PDF
    Background: Hyperlysinemia is an autosomal recessive inborn error of L-lysine degradation. To date only one causal mutation in the AASS gene encoding aminoadipic semialdehyde synthase has been reported. We aimed to better define the genetic basis of hyperlysinemia. Methods. We collected the clinical, biochemical and molecular data in a cohort of 8 hyperlysinemia patients with distinct neurological features. Results: We found novel causal mutations in AASS in all affected individuals, including 4 missense mutations, 2 deletions and 1 duplication. In two patients originating from one family, the hyperlysinemia was caused by a contiguous gene deletion syndrome affecting AASS and PTPRZ1. Conclusions: Hyperlysinemia is caused by mutations in AASS. As hyperlysinemia is generally considered a benign metabolic variant, the more severe neurological disease course in two patients with a contiguous deletion syndrome may be explained by the additional loss of PTPRZ1. Our findings illustrate the importance of detailed biochemical and genetic studies in any hyperlysinemia patient

    The natural course of infantile Pompe's disease: 20 original cases compared with 133 cases from the literature

    Get PDF
    OBJECTIVE: Infantile Pompe's disease is a lethal cardiac and muscular disorder. Current developments toward enzyme replacement therapy are promising. The aim of our study is to delineate the natural course of the disease to verify endpoints of clinical studies. METHODS: A total of 20 infantile patients diagnosed by the collaborative Dutch centers and 133 cases reported in literature were included in the study. Information on clinical history, physical examination, and diagnostic parameters was collected. RESULTS: The course of Pompe's disease is essentially the same in the Dutch and the general patient population. Symptoms start at a median age of 1.6 months in both groups. The median age of death is 7.7 and 6 months, respectively. Five percent of the Dutch patients and 8% of all reported patients survive beyond 1 year of age. Only 2 patients from literature became older than 18 months. A progressive cardiac hypertrophy is characteristic for infantile Pompe's disease. The diastolic thickness of the left ventricular posterior wall and cardiac weight at autopsy increase significantly with age. Motor development is severely delayed and major d

    574-586 Mutations in PCBD1 cause hypomagnesemia and renal magnesium wasting

    No full text
    Mutations in PCBD1 are causative for transient neonatal hyperphenylalaninemia and primapterinuria (HPABH4D). Until now, HPABH4D has been regarded as a transient and benign neonatal syndrome without complications in adulthood. In our study of three adult patients with homozygous mutations in the PCBD1 gene, two patients were diagnosed with hypomagnesemia and renal Mg 2+ loss, and two patients developed diabetes with characteristics of maturity onset diabetes of the young (MODY), regardless of serum Mg2+ levels. Our results suggest that these clinical findings are related to the function of PCBD1 as a dimerization cofactor for the transcription factor HNF1B. Mutations in the HNF1B gene have been shown to cause renal malformations, hypomagnesemia, and MODY. Gene expression studies combined with immunohistochemical analysis in the kidney showed that Pcbd1 is expressed in the distal convoluted tubule (DCT), where Pcbd1 transcript levels are upregulated by a low Mg2+-containing diet. Overexpression in a human kidney cell line showed that wild-type PCBD1 binds HNF1B to costimulate the FXYD2 promoter, the activity of which is instrumental in Mg2+ reabsorption in the DCT. Of seven PCBD1 mutations previously reported in HPABH4D patients, five mutations caused proteolytic instability, leading to reduced FXYD2 promoter activity. Furthermore, cytosolic localization of PCBD1 increased when coexpressed with HNF1B mutants. Overall, our findings establish PCBD1 as a coactivator of the HNF1B-mediated transcription necessary for fine tuning FXYD2 transcription in the DCT and suggest that patients with HPABH4D should be monitored for previously unrecognized late complications, such as hypomagnesemia and MODY diabetes. Copyrigh

    Long-term intravenous treatment of Pompe disease with recombinant human alpha-glucosidase from milk

    No full text
    OBJECTIVE: Recent reports warn that the worldwide cell culture capacity is insufficient to fulfill the increasing demand for human protein drugs. Production in milk of transgenic animals is an attractive alternative. Kilogram quantities of product per year can be obtained at relatively low costs, even in small animals such as rabbits. We tested the long-term safety and efficacy of recombinant human -glucosidase (rhAGLU) from rabbit milk for the treatment of the lysosomal storage disorder Pompe disease. The disease occurs with an estimated frequency of 1 in 40,000 and is designated as orphan disease. The classic infantile form leads to death at a median age of 6 to 8 months and is diagnosed by absence of alpha-glucosidase activity and presence of fully deleterious mutations in the alpha-glucosidase gene. Cardiac hypertrophy is characteristically present. Loss of muscle strength prevents infants from achieving developmental milestones such as sitting, standing, and walking. Milde
    corecore