25 research outputs found
Correlation energy of an electron gas in strong magnetic fields at high densities
The high-density electron gas in a strong magnetic field B and at zero
temperature is investigated. The quantum strong-field limit is considered in
which only the lowest Landau level is occupied. It is shown that the
perturbation series of the ground-state energy can be represented in analogy to
the Gell-Mann Brueckner expression of the ground-state energy of the field-free
electron gas. The role of the expansion parameter is taken by r_B= (2/3 \pi^2)
(B/m^2) (\hbar r_s /e)^3 instead of the field-free Gell-Mann Brueckner
parameter r_s. The perturbation series is given exactly up to o(r_B) for the
case of a small filling factor for the lowest Landau level.Comment: 10 pages, Accepted for publication in Phys.Rev.
Magnetic-field-induced Luttinger liquid
It is shown that a strong magnetic field applied to a bulk metal induces a
Luttinger-liquid phase. This phase is characterized by the zero-bias anomaly in
tunneling: the tunneling conductance scales as a power-law of voltage or
temperature. The tunneling exponent increases with the magnetic field as BlnB.
The zero-bias anomaly is most pronounced for tunneling with the field applied
perpendicular to the plane of the tunneling junction.Comment: a reference added, minor typos correcte
Matter in Strong Magnetic Fields
The properties of matter are significantly modified by strong magnetic
fields, Gauss (), as are typically
found on the surfaces of neutron stars. In such strong magnetic fields, the
Coulomb force on an electron acts as a small perturbation compared to the
magnetic force. The strong field condition can also be mimicked in laboratory
semiconductors. Because of the strong magnetic confinement of electrons
perpendicular to the field, atoms attain a much greater binding energy compared
to the zero-field case, and various other bound states become possible,
including molecular chains and three-dimensional condensed matter. This article
reviews the electronic structure of atoms, molecules and bulk matter, as well
as the thermodynamic properties of dense plasma, in strong magnetic fields,
. The focus is on the basic physical pictures and
approximate scaling relations, although various theoretical approaches and
numerical results are also discussed. For the neutron star surface composed of
light elements such as hydrogen or helium, the outermost layer constitutes a
nondegenerate, partially ionized Coulomb plasma if , and may be in
the form of a condensed liquid if the magnetic field is stronger (and
temperature K). For the iron surface, the outermost layer of the
neutron star can be in a gaseous or a condensed phase depending on the cohesive
property of the iron condensate.Comment: 45 pages with 9 figures. Many small additions/changes. Accepted for
publication in Rev. Mod. Phy