697 research outputs found

    Adenovirus vector and mRNA vaccines: mechanisms regulating their immunogenicity

    Get PDF
    Replication-incompetent adenovirus (Ad) vector and mRNA-lipid nanoparticle (LNP) constructs represent two modular vaccine platforms that have attracted substantial interest over the past two decades. Due to the COVID-19 pandemic and the rapid development of multiple successful vaccines based on these technologies, there is now clear real-world evidence of the utility and efficacy of these platforms. Considerable optimization and refinement efforts underpin the successful application of these technologies. Despite this, our understanding of the specific pathways and processes engaged by these vaccines to stimulate the immune response remains incomplete. This review will synthesize our current knowledge of the specific mechanisms by which CD8+ T cell and antibody responses are induced by each of these vaccine platforms, and how this can be impacted by specific vaccine construction techniques. Key gaps in our knowledge are also highlighted, which can hopefully focus future studies

    CMV and the Art of Memory Maintenance

    Get PDF
    The CD8+ T cell responses to CMV gradually increase in magnitude over time—so-called memory “inflation.” In this issue of Immunity, Snyder et al. (2008) examine the dynamics of memory inflation and demonstrate continuous turnover of inflating T cells, drawing on both memory cells and naive cells to replace them

    Indirect effects of cytomegalovirus infection: Implications for vaccine development

    Get PDF
    Development of a cytomegalovirus (CMV) vaccine is a high priority due to its significant global impact—contributing to mortality in immunosuppressed individuals, neurodevelopmental delay in infected neonates and non-genetic sensorineural hearing loss. The impact of CMV on the general population has been less well studied; however, a wide range of evidence indicates that CMV may increase the risk of atherosclerosis, cancer, immunosenescence, and progression of tuberculosis (TB) and human immunodeficiency virus. Due to the high seroprevalence of CMV worldwide, any modulation of risk by CMV is likely to have a significant impact on the epidemiology of these diseases. This review will evaluate how CMV may cause morbidity and mortality outside of the neonatal and immunosuppressed populations and consider the potential impact of a CMV vaccine on these outcomes

    Insights Into Mucosal-Associated Invariant T Cell Biology From Studies of Invariant Natural Killer T Cells

    Get PDF
    Mucosal-associated invariant T (MAIT) cells and invariant natural killer T (iNKT) cells are innate-like T cells that function at the interface between innate and adaptive immunity. They express semi-invariant T cell receptors (TCRs) and recognize unconventional non-peptide ligands bound to the MHC Class I-like molecules MR1 and CD1d, respectively. MAIT cells and iNKT cells exhibit an effector-memory phenotype and are enriched within the liver and at mucosal sites. In humans, MAIT cell frequencies dwarf those of iNKT cells, while in laboratory mouse strains the opposite is true. Upon activation via TCR- or cytokine-dependent pathways, MAIT cells and iNKT cells rapidly produce cytokines and show direct cytotoxic activity. Consequently, they are essential for effective immunity, and alterations in their frequency and function are associated with numerous infectious, inflammatory, and malignant diseases. Due to their abundance in mice and the earlier development of reagents, iNKT cells have been more extensively studied than MAIT cells. This has led to the routine use of iNKT cells as a reference population for the study of MAIT cells, and such an approach has proven very fruitful. However, MAIT cells and iNKT cells show important phenotypic, functional, and developmental differences that are often overlooked. With the recent availability of new tools, most importantly MR1 tetramers, it is now possible to directly study MAIT cells to understand their biology. Therefore, it is timely to compare the phenotype, development, and function of MAIT cells and iNKT cells. In this review, we highlight key areas where MAIT cells show similarity or difference to iNKT cells. In addition, we discuss important avenues for future research within the MAIT cell field, especially where comparison to iNKT cells has proven less informative

    Evolution of CD8(+) T Cell Responses after Acute PARV4 Infection

    Get PDF
    PARV4 is a small DNA human virus that is strongly associated with hepatitis C virus (HCV) and HIV infections. The immunologic control of acute PARV4 infection has not been previously described. We define the acute onset of PARV4 infection and the characteristics of the acute-phase and memory immune responses to PARV4 in a group of HCV- and HIV-negative, active intravenous drug users. Ninety-eight individuals at risk of blood-borne infections were tested for PARV4 IgG. Gamma interferon enzyme-linked immunosorbent spot assays, intracellular cytokine staining, and a tetrameric HLA-A2-peptide complex were used to define the T cell populations responding to PARV4 peptides in those individuals who acquired infection during the study. Thirty-five individuals were found to be PARV4 seropositive at the end of the study, eight of whose baseline samples were found to be seronegative. Persistent and functional T cell responses were detected in the acute infection phase. These responses had an active, mature, and cytotoxic phenotype and were maintained several years after infection. Thus, PARV4 infection is common in individuals exposed to blood-borne infections, independent of their HCV or HIV status. Since PARV4 elicits strong, broad, and persistent T cell responses, understanding of the processes responsible may prove useful for future vaccine design

    Inflation vs. Exhaustion of Antiviral CD8+ T-Cell Populations in Persistent Infections: Two Sides of the Same Coin?

    Get PDF
    Persistent virus infection can drive CD8+ T-cell responses which are markedly divergent in terms of frequency, phenotype, function, and distribution. On the one hand viruses such as Lymphocytic Choriomeningitis Virus (LCMV) Clone 13 can drive T-cell “exhaustion”, associated with upregulation of checkpoint molecules, loss of effector functions, and diminished control of viral replication. On the other, low-level persistence of viruses such as Cytomegalovirus and Adenoviral vaccines can drive memory “inflation,” associated with sustained populations of CD8+ T-cells over time, with maintained effector functions and a distinct phenotype. Underpinning these divergent memory pools are distinct transcriptional patterns—we aimed to compare these to explore the regulation of CD8+ T-cell memory against persistent viruses at the level of molecular networks and address whether dysregulation of specific modules may account for the phenotype observed. By exploring in parallel and also merging existing datasets derived from different investigators we attempted to develop a combined model of inflation vs. exhaustion and investigate the gene expression networks that are shared in these memory pools. In such comparisons, co-ordination of a critical module of genes driven by Tbx21 is markedly different between the two memory types. These exploratory data highlight both the molecular similarities as well as the differences between inflation and exhaustion and we hypothesize that co-ordinated regulation of a key genetic module may underpin the markedly different resultant functions and phenotypes in vivo—an idea which could be tested directly in future experiments

    Nanopore sequencing and full genome de novo assembly of human cytomegalovirus TB40/E reveals clonal diversity and structural variations.

    Get PDF
    BACKGROUND: Human cytomegalovirus (HCMV) has a double-stranded DNA genome of approximately 235 Kbp that is structurally complex including extended GC-rich repeated regions. Genomic recombination events are frequent in HCMV cultures but have also been observed in vivo. Thus, the assembly of HCMV whole genomes from technologies producing shorter than 500 bp sequences is technically challenging. Here we improved the reconstruction of HCMV full genomes by means of a hybrid, de novo genome-assembly bioinformatics pipeline upon data generated from the recently released MinION MkI B sequencer from Oxford Nanopore Technologies. RESULTS: The MinION run of the HCMV (strain TB40/E) library resulted in ~ 47,000 reads from a single R9 flowcell and in ~ 100× average read depth across the virus genome. We developed a novel, self-correcting bioinformatics algorithm to assemble the pooled HCMV genomes in three stages. In the first stage of the bioinformatics algorithm, long contigs (N50 = 21,892) of lower accuracy were reconstructed. In the second stage, short contigs (N50 = 5686) of higher accuracy were assembled, while in the final stage the high quality contigs served as template for the correction of the longer contigs resulting in a high-accuracy, full genome assembly (N50 = 41,056). We were able to reconstruct a single representative haplotype without employing any scaffolding steps. The majority (98.8%) of the genomic features from the reference strain were accurately annotated on this full genome construct. Our method also allowed the detection of multiple alternative sub-genomic fragments and non-canonical structures suggesting rearrangement events between the unique (UL /US) and the repeated (T/IRL/S) genomic regions. CONCLUSIONS: Third generation high-throughput sequencing technologies can accurately reconstruct full-length HCMV genomes including their low-complexity and highly repetitive regions. Full-length HCMV genomes could prove crucial in understanding the genetic determinants and viral evolution underpinning drug resistance, virulence and pathogenesis

    Impairment of Cd4+ T Cell Responses during Chronic Virus Infection Prevents Neutralizing Antibody Responses against Virus Escape Mutants

    Get PDF
    We have shown previously that neutralizing antibodies (nAbs) are important contributors to the long-term immune control of lymphocytic choriomeningitis virus infection, particularly if cytotoxic T cell responses are low or absent. Nevertheless, virus escape from the nAb response due to mutations within the surface glycoprotein gene may subsequently allow the virus to persist. Here we show that most of the antibody-escape viral mutants retain their immunogenicity. We present evidence that the failure of the infected host to mount effective humoral responses against emerging neutralization-escape mutants correlates with the rapid loss of CD4+ T cell responsiveness during the establishment of viral persistence. Similar mechanisms may contribute to the persistence of some human pathogens such as hepatitis B and C viruses, and human immunodeficiency virus

    Hepatitis B Virus Adaptation to the CD8+ T Cell Response: Consequences for Host and Pathogen

    Get PDF
    Chronic viral hepatitis infections are a major public health concern, with an estimated 290 million individuals infected with hepatitis B virus (HBV) globally. This virus has been a passenger in human populations for >30,000 years, and remains highly prevalent in some settings. In order for this endemic pathogen to persist, viral adaptation to host immune responses is pre-requisite. Here, we focus on the interplay between HBV infection and the CD8+ T cell response. We present the evidence that CD8+ T cells play an important role in control of chronic HBV infection and that the selective pressure imposed on HBV through evasion of these immune responses can potentially influence viral diversity, chronicity, and the outcome of infection, and highlight where there are gaps in current knowledge. Understanding the nature and mechanisms of HBV evolution and persistence could shed light on differential disease outcomes, including cirrhosis and hepatocellular carcinoma, and help reach the goal of global HBV elimination by guiding the design of new strategies, including vaccines and therapeutics
    corecore