306 research outputs found

    Field Induced Magnetic Ordering and Single-ion Anisotropy in the Quasi-1D Haldane Chain Compound SrNi2V2O8: A Single Crystal investigation

    Get PDF
    Field-induced magnetic ordering in the Haldane chain compound SrNi2_{2}V2_{2}O8_{8} and effect of anisotropy have been investigated using single crystals. Static susceptibility, inelastic neutron scattering, high-field magnetization, and low temperature heat-capacity studies confirm a non-magnetic spin-singlet ground state and a gap between the singlet ground state and triplet excited states. The intra-chain exchange interaction is estimated to be J8.9±J \sim 8.9{\pm}0.1 meV. Splitting of the dispersions into two modes with minimum energies 1.57 and 2.58 meV confirms the existence of single-ion anisotropy D(Sz)2D(S^z){^2}. The value of {\it D} is estimated to be 0.51±0.01-0.51{\pm}0.01 meV and the easy axis is found to be along the crystallographic {\it c}-axis. Field-induced magnetic ordering has been found with two critical fields [μ0Hcc=12.0±\mu_0H_c^{\perp c} = 12.0{\pm}0.2 T and μ0Hcc=20.8±\mu_0H_c^{\parallel c} = 20.8{\pm}0.5 T at 4.2 K]. Field-induced three-dimensional magnetic ordering above the critical fields is evident from the heat-capacity, susceptibility, and high-field magnetization study. The Phase diagram in the {\it H-T} plane has been obtained from the high-field magnetization. The observed results are discussed in the light of theoretical predictions as well as earlier experimental reports on Haldane chain compounds

    Book reviews

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47961/1/11406_2006_Article_BF02380919.pd

    Magnetic excitations in the S = 1/2 antiferromagnetic-ferromagnetic chain compound BaCu2V2O8 at zero and finite temperature

    Get PDF
    Unlike most quantum systems which rapidly become incoherent as temperature is raised, strong correlations persist at elevated temperatures in S=1/2S=1/2 dimer magnets, as revealed by the unusual asymmetric lineshape of their excitations at finite temperatures. Here we quantitatively explore and parameterize the strongly correlated magnetic excitations at finite temperatures using the high resolution inelastic neutron scattering on the model compound BaCu2_2V2_2O8_8 which we show to be an alternating antiferromagnetic-ferromagnetic spin1/2-1/2 chain. Comparison to state of the art computational techniques shows excellent agreement over a wide temperature range. Our findings hence demonstrate the possibility to quantitatively predict coherent behavior at elevated temperatures in quantum magnets.Comment: 5 pages + 6 pages supplement; problems with list of references are fixe

    Direct observation of the Higgs amplitude mode in a two-dimensional quantum antiferromagnet near the quantum critical point

    Full text link
    Spontaneous symmetry-breaking quantum phase transitions play an essential role in condensed matter physics. The collective excitations in the broken-symmetry phase near the quantum critical point can be characterized by fluctuations of phase and amplitude of the order parameter. The phase oscillations correspond to the massless Nambu-Goldstone modes whereas the massive amplitude mode, analogous to the Higgs boson in particle physics, is prone to decay into a pair of low-energy Nambu-Goldstone modes in low dimensions. Especially, observation of a Higgs amplitude mode in two dimensions is an outstanding experimental challenge. Here, using the inelastic neutron scattering and applying the bond-operator theory, we directly and unambiguously identify the Higgs amplitude mode in a two-dimensional S=1/2 quantum antiferromagnet C9_9H18_{18}N2_2CuBr4_4 near a quantum critical point in two dimensions. Owing to an anisotropic energy gap, it kinematically prevents such decay and the Higgs amplitude mode acquires an infinite lifetime.Comment: 12 pages, 4 figures in the main text+3 figures in Supplementary Informatio

    New mutations at the imprinted Gnas cluster show gene dosage effects of Gsα in postnatal growth and implicate XLαs in bone and fat metabolism, but not in suckling

    Get PDF
    The imprinted Gnas cluster is involved in obesity, energy metabolism, feeding behavior, and viability. Relative contribution of paternally expressed proteins XLαs, XLN1, and ALEX or a double dose of maternally expressed Gsα to phenotype has not been established. In this study, we have generated two new mutants (Ex1A-T-CON and Ex1A-T) at the Gnas cluster. Paternal inheritance of Ex1A-T-CON leads to loss of imprinting of Gsα, resulting in preweaning growth retardation followed by catch-up growth. Paternal inheritance of Ex1A-T leads to loss of imprinting of Gsα and loss of expression of XLαs and XLN1. These mice have severe preweaning growth retardation and incomplete catch-up growth. They are fully viable probably because suckling is unimpaired, unlike mutants in which the expression of all the known paternally expressed Gnasxl proteins (XLαs, XLN1 and ALEX) is compromised. We suggest that loss of ALEX is most likely responsible for the suckling defects previously observed. In adults, paternal inheritance of Ex1A-T results in an increased metabolic rate and reductions in fat mass, leptin, and bone mineral density attributable to loss of XLαs. This is, to our knowledge, the first report describing a role for XLαs in bone metabolism. We propose that XLαs is involved in the regulation of bone and adipocyte metabolism

    EORTC consensus recommendations for the treatment of mycosis fungoides/Sézary syndrome - Update 2023.

    Get PDF
    On behalf of the EORTC Cutaneous Lymphoma Tumours Group (EORTC-CLTG) and following up on earlier versions published in 2006 and 2017 this document provides an updated standard for the treatment of mycosis fungoides and Sézary syndrome (MF/SS). It considers recent relevant publications and treatment options introduced into clinical practice after 2017. Consensus was established among the authors through a series of consecutive consultations in writing and a round of discussion. Treatment options are assigned to each disease stage and, whenever possible and clinically useful, separated into first- and second line options annotated with levels of evidence. Major changes to the previous version include the incorporation of chlormethine, brentuximab vedotin, and mogamulizumab, recommendations on the use of pegylated interferon α (after withdrawal of recombinant unpegylated interferons), and the addition of paragraphs on supportive therapy and on the care of older patients. Still, skin-directed therapies are the most appropriate option for early-stage MF and most patients have a normal life expectancy but may suffer morbidity and impaired quality of life. In advanced disease treatment options have expanded recently. Most patients receive multiple consecutive therapies with treatments often having a relatively short duration of response. For those patients prognosis is still poor and only for a highly selected subset long term remission can be achieved with allogeneic stem cell transplantation. Understanding of the disease, its epidemiology and clinical course, and its most appropriate management are gradually advancing, and there is well-founded hope that this will lead to further improvements in the care of patients with MF/SS

    Tetrahedra system Cudaca: high-temperature manifold of molecular configurations governing low-temperature properties

    Full text link
    The Cudaca system composed of isolated Cu2+ S=1/2 tetrahedra with antiferromagnetic exchange should exhibit properties of a frustrated quantum spin system. ab initio density functional theory calculations for electronic structure and molecular dynamics computations suggest a complex interplay between magnetic exchange, electron delocalization and molecular vibrations. Yet, extensive experimental characterization of Cudaca by means of synchrotron x-ray diffraction, magnetization, specific heat and inelastic neutron scattering reveal that properties of the real material can be only partly explained by proposed theoretical models as the low temperature properties seem to be governed by a manifold of molecular configurations coexisting at high temperatures.Comment: 15 figure

    Chemoattractant Signaling between Tumor Cells and Macrophages Regulates Cancer Cell Migration, Metastasis and Neovascularization

    Get PDF
    Tumor-associated macrophages are known to influence cancer progression by modulation of immune function, angiogenesis, and cell metastasis, however, little is known about the chemokine signaling networks that regulate this process. Utilizing CT26 colon cancer cells and RAW 264.7 macrophages as a model cellular system, we demonstrate that treatment of CT26 cells with RAW 264.7 conditioned medium induces cell migration, invasion and metastasis. Inflammatory gene microarray analysis indicated CT26-stimulated RAW 264.7 macrophages upregulate SDF-1α and VEGF, and that these cytokines contribute to CT26 migration in vitro. RAW 264.7 macrophages also showed a robust chemotactic response towards CT26-derived chemokines. In particular, microarray analysis and functional testing revealed CSF-1 as the major chemoattractant for RAW 264.7 macrophages. Interestingly, in the chick CAM model of cancer progression, RAW 264.7 macrophages localized specifically to the tumor periphery where they were found to increase CT26 tumor growth, microvascular density, vascular disruption, and lung metastasis, suggesting these cells home to actively invading areas of the tumor, but not the hypoxic core of the tumor mass. In support of these findings, hypoxic conditions down regulated CSF-1 production in several tumor cell lines and decreased RAW 264.7 macrophage migration in vitro. Together our findings suggest a model where normoxic tumor cells release CSF-1 to recruit macrophages to the tumor periphery where they secrete motility and angiogenic factors that facilitate tumor cell invasion and metastasis
    corecore