38 research outputs found

    Cancer Therapy Targeting the HER2-PI3K Pathway: Potential Impact on the Heart

    Get PDF
    The HER2-PI3K pathway is the one of the most mutated pathways in cancer. Several drugs targeting the major kinases of this pathway have been approved by the Food and Drug Administration and many are being tested in clinical trials for the treatment of various cancers. However, the HER2-PI3K pathway is also pivotal for maintaining the physiological function of the heart, especially in the presence of cardiac stress. Clinical studies have shown that in patients treated with doxorubicin concurrently with Trastuzumab, a monoclonal antibody that blocks the HER2 receptor, the New York Heart Association class III/IV heart failure was significantly increased compared to those who were treated with doxorubicin alone (16 vs. 3%). Studies in transgenic mice have also shown that other key kinases of this pathway, such as PI3Kα, PDK1, Akt, and mTOR, are important for protecting the heart from ischemia-reperfusion and aortic stenosis induced cardiac dysfunction. Studies, however, have also shown that inhibition of PI3Kγ improve cardiac function of a failing heart. In addition, results from transgenic mouse models are not always consistent with the outcome of the pharmacological inhibition of this pathway. Here, we will review these findings and discuss how we can address the cardiac side-effects caused by inhibition of this important pathway in both cancer and cardiac biology

    Addition of platelet concentrate to Dermo-Epidermal Skin Graft in deep burn trauma reduces scarring and need for revision surgeries

    Get PDF
    Backround. Deep skin burn injuries, especially those on the face, hands, feet, genitalia and perineum represent significant therapeutic challenges. Autologous dermo-epidermal skin grafts (DESG) have become standard of care for treating deep burns. Additionally, human autologous thrombin activated autologous platelet concentrate (APC) has gained acceptance in the setting of wounds. While each of these interventions has been independently shown to accelerate healing, the combination of the two has never been evaluated. We hypothesized that the addition of platelets (source of growth factors and inhibitors necessary for tissue repair) to the DESG (source of progenitor cells and of tissue proteases necessary for spatial and temporal control of growth regulators released from platelets) would create the optimal environment for the reciprocal interaction of cells within the healing tissues. Methods: We used clinical examination (digital photography), standardised scales for evaluating pain and scarring, in combination with blood perfusion (laser Doppler imaging), as well as molecular and laboratory analyses. Results: We show for the first time that the combination of APC and DESG leads to earlier relief of pain, and decreased use of analgesics, antipruritics and orthotic devices. Most importantly, this treatment is associated with earlier discharges from hospital and significant cost savings. Conclusions: Our findings indicate that DESG engraftment is facilitated by the local addition of platelets and by systemic thrombocytosis. This local interaction leads to the physiological revascularization at 1-3 months. We observed significant elevation of circulating platelets in early stages of engraftment (1-7 days), which normalized over the subsequent 7 and 90 days.Web of Science158225824

    Design principles for cancer therapy guided by changes in complexity of protein-protein interaction networks

    Get PDF
    International audienceBackground: The ever-increasing expanse of online bioinformatics data is enabling new ways to, not only explore the visualization of these data, but also to apply novel mathematical methods to extract meaningful information for clinically relevant analysis of pathways and treatment decisions. One of the methods used for computing topological characteristics of a space at different spatial resolutions is persistent homology. This concept can also be applied to network theory, and more specifically to protein-protein interaction networks, where the number of rings in an individual cancer network represents a measure of complexity. Results: We observed a linear correlation of R = −0.55 between persistent homology and 5-year survival of patients with a variety of cancers. This relationship was used to predict the proteins within a protein-protein interaction network with the most impact on cancer progression. By re-computing the persistent homology after computationally removing an individual node (protein) from the protein-protein interaction network, we were able to evaluate whether such an inhibition would lead to improvement in patient survival. The power of this approach lied in its ability to identify the effects of inhibition of multiple proteins and in the ability to expose whether the effect of a single inhibition may be amplified by inhibition of other proteins. More importantly, we illustrate specific examples of persistent homology calculations, which correctly predict the survival benefit observed effects in clinical trials using inhibitors of the identified molecular target. Conclusions: We propose that computational approaches such as persistent homology may be used in the future for selection of molecular therapies in clinic. The technique uses a mathematical algorithm to evaluate the node (protein) whose inhibition has the highest potential to reduce network complexity. The greater the drop in persistent homology, the greater reduction in network complexity, and thus a larger potential for survival benefit. We hope that the use of advanced mathematics in medicine will provide timely information about the best drug combination for patients, and avoid the expense associated with an unsuccessful clinical trial, where drug(s) did not show a survival benefit. Reviewers: This article was reviewed by Nathan J. Bowen (nominated by I. King Jordan), Tomasz Lipniacki, and Merek Kimmel

    Successful Antiangiogenic Therapy for Neuroblastoma With Thalidomide

    No full text

    Oncogenes and Angiogenesis: Signaling Three-Dimensional Tumor Growth

    Get PDF
    Three-dimensional tumor growth is dependent on the perpetual recruitment of host blood vessels to the tumor site. This recruitment process (mainly via angiogenesis) is thought to be triggered, at least in part, by the very same set of genetic alterations (activated oncogenes, inactivated/lost tumor suppressor genes) as those responsible for other aspects of malignant transformation (e.g., aberrant mitogenesis, resistance to apoptosis). Potent oncogenes are able to deregulate expression of both angiogenesis stimulators and inhibitors in cancer cells. For example, mutant ras expression is associated with increased production of vascular endothelial growth factor (VEGF) and downregulation of thrombospondin-1 (TSP-1). Upregulation of VEGF and angiogenesis can also be induced by constitutive activation of other oncogenic proteins (e.g., EGFR, Raf, MEK, PI3K) acting at various levels on the Ras signaling pathway. The mode and the magnitude of such pro-angiogenic influences can be significantly modified by cell type (fibroblastic or epithelial origin), epigenetic factors (hypoxia, changes in cell density), and/or presence of additional genetic lesions (e.g., preceding loss of p16 or p53 tumor suppressor genes). Activated oncogenes (e.g., ras, src, HER-2) induce co-expression of angiogenic properties concomitantly with several highly selectable traits (increased mitogenesis, resistance to apoptosis), a circumstance that may accelerate selection of the angiogenic phenotype at the cell population level. On the other hand oncogene-induced reduction in growth requirements may also endow tumor cells with a diminished (albeit not abrogated) dependence on (close) proximity to blood vessels, i.e., with reduced vascular dependence. Thus, oncogenes can impact several interconnected aspects of cellular growth, survival, and angiogenesis. Experimental evidence suggests that, in principle, many of these properties (including angiogenesis) can be simultaneously suppressed (and tumor stasis or regression induced) by effective use of the specific oncogene antagonists and signal transduction inhibitors

    Normal Wound Healing and Tumor Angiogenesis as a Game of Competitive Inhibition.

    Get PDF
    Both normal wound healing and tumor angiogenesis are mitigated by the sequential, carefully orchestrated release of growth stimulators and inhibitors. These regulators are released from platelet clots formed at the sites of activated endothelium in a temporally and spatially controlled manner, and the order of their release depends on their affinity to glycosaminoglycans (GAG) such as heparan sulfate (HS) within the extracellular matrix, and platelet open canallicular system. The formation of vessel sprouts, triggered by angiogenesis regulating factors with lowest affinities for heparan sulfate (e.g. VEGF), is followed by vessel-stabilizing PDGF-B or bFGF with medium affinity for HS, and by inhibitors such as PF-4 and TSP-1 with the highest affinities for HS. The invasive wound-like edge of growing tumors has an overabundance of angiogenesis stimulators, and we propose that their abundance out-competes angiogenesis inhibitors, effectively preventing inhibition of angiogenesis and vessel maturation. We evaluate this hypothesis using an experimentally motivated agent-based model, and propose a general theoretical framework for understanding mechanistic similarities and differences between the processes of normal wound healing and pathological angiogenesis from the point of view of competitive inhibition
    corecore