212 research outputs found
The Antarctic radio tropopause, cirrus clouds and their relation to meteorological systems
第3回極域科学シンポジウム/第35回極域気水圏シンポジウム 11月30日(金) 国立国語研究所 2階多目的
Evolution of the eastward shift in the quasi-stationary minimum of the Antarctic total ozone column
The quasi-stationary pattern of the Antarctic total ozone has changed during the last 4 decades, showing an eastward shift in the zonal ozone minimum. In this work, the association between the longitudinal shift of the zonal ozone minimum and changes in meteorological fields in austral spring (September–November) for 1979–2014 is analyzed using ERA-Interim and NCEP–NCAR reanalyses. Regressive, correlative and anomaly composite analyses are applied to reanalysis data. Patterns of the Southern Annular Mode and quasi-stationary zonal waves 1 and 3 in the meteorological fields show relationships with interannual variability in the longitude of the zonal ozone minimum. On decadal timescales, consistent longitudinal shifts of the zonal ozone minimum and zonal wave 3 pattern in the middle-troposphere temperature at the southern midlatitudes are shown. Attribution runs of the chemistry–climate version of the Australian Community Climate and Earth System Simulator (ACCESS-CCM) model suggest that long-term shifts of the zonal ozone minimum are separately contributed by changes in ozone-depleting substances and greenhouse gases. As is known, Antarctic ozone depletion in spring is strongly projected on the Southern Annular Mode in summer and impacts summertime surface climate across the Southern Hemisphere. The results of this study suggest that changes in zonal ozone asymmetry accompanying ozone depletion could be associated with regional climate changes in the Southern Hemisphere in spring
Seasonal MLT-region nightglow intensities, temperatures, and emission heights at a Southern Hemisphere midlatitude site
We consider 5 years of spectrometer measurements of OH(6–2) and O2(0–1) airglow emission intensities and temperatures made near Adelaide, Australia (35° S, 138° E), between September 2001 and August 2006 and compare them with measurements of the same parameters from at the same site using an airglow imager, with the intensities of the OH(8–3) and O(1S) emissions made with a filter photometer, and with 2 years of Aura MLS (Microwave Limb Sounder) v3.3 temperatures and 4.5 years of TIMED SABER (Thermosphere Ionosphere Mesosphere Energetics and Dynamics Sounding of the Atmosphere using Broadband Emission Radiometry) v2.0 temperatures for the same site. We also consider whether we can recover the actual emission heights from the intercomparison of the ground-based and satellite observations. We find a significant improvement in the correlation between the spectrometer OH and SABER temperatures by interpolating the latter to constant density surfaces determined using a meteor radar.Iain M. Reid, Andrew J. Spargo, Jonathan M. Woithe, Andrew R. Klekociuk, Joel P. Younger and Gulamabas G. Sivje
Simultaneous observations of Polar Mesosphere Summer Echoes at two different latitudes in Antarctica
Simultaneous observations of Polar Mesosphere Summer Echoes (PMSE) at Wasa and Davis in Antarctica have been compared. Data with simultaneous observations were obtained for 16 days between 18 January and 5 February 2007. Wasa is at a higher geographic latitude than Davis, but at lower geomagnetic latitude. PMSE strength and occurrence frequency were significantly higher at Wasa. The variation of daily PMSE occurrence over the measurement period was in agreement with temperature and frost-point estimates from the Microwave Limb Sounder on the Aura spacecraft for both Wasa and Davis. The diurnal variation of PMSE strength and occurrence frequency as well as the shape of the altitude profiles of average PMSE strength and occurrence frequency were similar for the two sites. The deepest part of the evening minimum in PMSE occurrence frequency occurred for the same magnetic local time at the two sites rather than for the same local solar time. The study indicates that PMSE strength and occurrence increase between 68.6° and 73° geographic latitude, consistent with observed differences in mesospheric temperatures and water vapor content. The average altitude distribution of PMSE varies relatively little with latitude in the same hemisphere
- …