5 research outputs found
Small molecule specifically inhibiting microglial nitric oxide release could become a potential treatment for neuroinflammation
Microglia are the immune effector cells of the central nervous system (CNS) and react to pathologic events with a complex process including the release of nitric oxide (NO). NO is a free radical, which is toxic for all cells at high concentrations. To target an exaggerated NO release, we tested a library of 16 544 chemical compounds for their effect on lipopolysaccharide (LPS)-induced NO release in cell line and primary neonatal microglia. We identified a compound (C1) which significantly reduced NO release in a dose-dependent manner, with a low IC50 (252 nM) and no toxic side effects in vitro or in vivo. Target finding strategies such as in silico modelling and mass spectroscopy hint towards a direct interaction between C1 and the nitric oxide synthase making C1 a great candidate for specific intra-cellular interaction with the NO producing machinery
The FGFR inhibitor PD173074 binds to the C-terminus of oncofetal HMGA2 and modulates its DNA-binding and transcriptional activation functions
The architectural chromatin factor high-mobility group AT-hook 2 (HMGA2) is causally involved in several human malignancies and pathologies. HMGA2 is not expressed in most normal adult somatic cells, which renders the protein an attractive drug target. An established cell-based compound library screen identified the fibroblast growth factor receptor (FGFR) inhibitor PD173074 as an antagonist of HMGA2-mediated transcriptional reporter gene activation. We determined that PD173074 binds the C-terminus of HMGA2 and interferes with functional coordination of the three AT-hook DNA-binding domains mediated by the C-terminus. The HMGA2-antagonistic effect of PD173074 on transcriptional activation may therefore result from an induced altered DNA-binding mode of HMGA2. PD173074 as a novel HMGA2-specific antagonist could trigger the development of derivates with enhanced attributes and clinical potential