3 research outputs found

    Agent-based simulation of collective cooperation: from experiment to model

    Get PDF
    Simulation models of pedestrian dynamics have become an invaluable tool for evacuation planning. Typically, crowds are assumed to stream unidirectionally towards a safe area. Simulated agents avoid collisions through mechanisms that belong to each individual, such as being repelled from each other by imaginary forces. But classic locomotion models fail when collective cooperation is called for, notably when an agent, say a first-aid attendant, needs to forge a path through a densely packed group. We present a controlled experiment to observe what happens when humans pass through a dense static crowd. We formulate and test hypotheses on salient phenomena. We discuss our observations in a psychological framework. We derive a model that incorporates: agents’ perception and cognitive processing of a situation that needs cooperation; selection from a portfolio of behaviours, such as being cooperative; and a suitable action, such as swapping places. Agents’ ability to successfully get through a dense crowd emerges as an effect of the psychological model

    Vadere: An Open-Source Simulation Framework to Promote Interdisciplinary Understanding

    Get PDF
    Pedestrian dynamics is an interdisciplinary field of research. Psychologists, sociologists, traffic engineers, physicists, mathematicians and computer scientists all strive to understand the dynamics of a moving crowd. In principle, computer simulations offer means to further this understanding. Yet, unlike for many classic dynamical systems in physics, there is no universally accepted locomotion model for crowd dynamics. On the contrary, a multitude of approaches, with very different characteristics, compete. Often only the experts in one special model type are able to assess the consequences these characteristics have on a simulation study. Therefore, scientists from all disciplines who wish to use simulations to analyze pedestrian dynamics need a tool to compare competing approaches. Developers, too, would profit from an easy way to get insight into an alternative modeling ansatz. Vadere meets this interdisciplinary demand by offering an open-source simulation framework that is lightweight in its approach and in its user interface while offering pre-implemented versions of the most widely spread models
    corecore