181 research outputs found
Spatial distributions of atomic hydrogen and C2 in an oxyacetylene flame in relation to diamond growth
Two-dimensional laser induced fluorescence measurements are applied to the chemical vapour deposition of diamond by an oxyacetylene flame to visualize the distributions of atomic hydrogen and C2 in the gas phase during diamond growth. Experiments are carried out in both laminar and turbulent flames and reveal that atomic hydrogen is ubiquitous at and beyond the flame front. Its presence extends to well outside the diamond deposition region, whereas the C2 distribution is limited to the flame front and the acetylene feather. The diamond layers obtained are characterized by optical as well as scanning electron microscopy and Raman spectroscopy. Clear relations are observed between the local variations in growth rate and quality of the diamond layer and the distribution of H and C2 in the boundary layer just above the substrate. These relations agree with theoretical models describing their importance in (flame) deposition processes of diamond. Three separate regions can be discerned in the flame and the diamond layer, where the gas phase and diamond growth are predominantly governed by the flame source gases, the ambient atmosphere, and the interaction of both, respectively
Measurement of CH2O in low and atmospheric pressure flames by Laser Induced Fluorescence and Cavity RingDown absorption
We have investigated the spatial structure of formaldehyde usinglaser-induced fluorescence (LIF), LIF imaging, and cavity ringdownspectroscopy (CRDS) in two flames. The first is an atmospheric pressureBunsen flame, into which are inserted various metal to simulatedifferent types of heat removal inserts in appliance flames. Here LIFimaging is used. The second is a low pressure flat flame that can bemodeled with a one-dimensional code. All three techniques are used. Theresults in both cases show that CH2O appears prior to CH, inlower pressure regions of the flame
A Salmonella virulence factor activates the NOD1/NOD2 signaling pathway.
The invasion-associated type III secretion system (T3SS-1) of Salmonella enterica serotype Typhimurium (S. Typhimurium) activates the transcription factor NF-κB in tissue culture cells and induces inflammatory responses in animal models through unknown mechanisms. Here we show that bacterial delivery or ectopic expression of SipA, a T3SS-1-translocated protein, led to the activation of the NOD1/NOD2 signaling pathway and consequent RIP2-mediated induction of NF-κB-dependent inflammatory responses. SipA-mediated activation of NOD1/NOD2 signaling was independent of bacterial invasion in vitro but required an intact T3SS-1. In the mouse colitis model, SipA triggered mucosal inflammation in wild-type mice but not in NOD1/NOD2-deficient mice. These findings implicate SipA-driven activation of the NOD1/NOD2 signaling pathway as a mechanism by which the T3SS-1 induces inflammatory responses in vitro and in vivo
Spray growth of regular, synthetic, oxygenated and biodiesels in an optical engine
Spray formation has been studied in an optically accessible heavy-duty diesel engine for regular diesel,synthetic, oxygenated and biofuels using a high-speed digital camera. Images are analyzed with custom madealgorithms to obtain spray penetration length and spray cone angle as function of time. Results from 2 out of the 8 nozzle sprays have been used in the data analysis. Variation in spray equilibrium length and angle is observed between the fuels tested. Modelling of the fuel injection, taking great care to account for individual fuel properties, shows good correspondence with experimental results
Laser beam attenuation in LIF measurements on NO in a diesel engine
The effect of laser beam attenuation on nitric oxide measurements in a diesel engine is presented. A number ofexperimental ways to correct for this attenuation are discussed: transmission measurements, bidirectional laserinducedfluorescence, and Raman scattering by N2. Comparison of the results indicates that the attenuation isgenerally not uniform over the cylinder. Instead it seems to be less severe over the field of view (i.e. the upper partof the cylinder)
Laser beam attenuation in LIF measurements on NO in a diesel engine
The effect of laser beam attenuation on nitric oxide measurements in a diesel engine is presented. A number ofexperimental ways to correct for this attenuation are discussed: transmission measurements, bidirectional laserinducedfluorescence, and Raman scattering by N\u3csub\u3e2\u3c/sub\u3e. Comparison of the results indicates that the attenuation isgenerally not uniform over the cylinder. Instead it seems to be less severe over the field of view (i.e. the upper partof the cylinder)
Quantitative nitric oxide measurements by means of laser-induced fluorescence in a heavy-duty Diesel engine
Quantitative in-cylinder laser-induced fluorescence measurements ofnitric oxide in a heavy-duty Diesel engine are presented. Special attention is paid to experimental techniques to assess the attenuation of the laser beam and the fluorescence signal by the cylinder contents.This attenuation can be considerable at certain stages in the combustionstroke. The temperature and pressure dependence of the fluorescence signal is described in various models. In this study, LIFsim was used.Finally, calibration was realized by concentration measurements in the exhaust gas
Having a direct look:analysis of DNA damage and repair mechanisms by next generation sequencing
AbstractGenetic information is under constant attack from endogenous and exogenous sources, and the use of model organisms has provided important frameworks to understand how genome stability is maintained and how various DNA lesions are repaired. The advance of high throughput next generation sequencing (NGS) provides new inroads for investigating mechanisms needed for genome maintenance. These emerging studies, which aim to link genetic toxicology and mechanistic analyses of DNA repair processes in vivo, rely on defining mutational signatures caused by faulty replication, endogenous DNA damaging metabolites, or exogenously applied genotoxins; the analysis of their nature, their frequency and distribution. In contrast to classical studies, where DNA repair deficiency is assessed by reduced cellular survival, the localization of DNA repair factors and their interdependence as well as limited analysis of single locus reporter assays, NGS based approaches reveal the direct, quantal imprint of mutagenesis genome-wide, at the DNA sequence level. As we will show, such investigations require the analysis of DNA derived from single genotoxin treated cells, or DNA from cell populations regularly passaged through single cell bottlenecks when naturally occurring mutation accumulation is investigated. We will argue that the life cycle of the nematode Caenorhabditis elegans, its genetic malleability combined with whole genome sequencing provides an exciting model system to conduct such analysis
Fuel effect on the liquid-phase penetration of an evaporating spray under transient diesel-like conditions
Measurements of the maximum liquid-phase penetration have been performed injecting five different fuels through a single-hole nozzle in an optical engine under a large set of thermodynamic and injection conditions. The focus of this paper is twofold. First, it intends to study fuel physical properties on liquid-phase fuel penetration. The choice made on Fischer-Tropsch diesel (FTD) and biodiesel fuels has been highly motivated by their potential to be, at short or middle term, possible substitutes to the conventional diesel fuel. Extensive characterization of fuel physical and chemical properties under ambient conditions are provided and related to the liquid-phase penetration in order to provide an accessible tool to predict liquid spray behavior based on cheap, off-engine measurements. Fischer-Tropsch fuels appeared to be the easiest to vaporize while biodiesel blends were getting always harder to vaporize as the Rapeseed Methyl Ester (RME) rate was increased. The second objective of this work is to study the time-response of liquid-phase penetration when subjected to density and temperature variations. Injections of 8 ms at three different pressures have been performed in transient diesel-like conditions with density and temperature time derivatives up to 2000 kg m -3 s -1 and 20,000 K s -1. In most cases, the spray appeared to closely follow predictions made from empirical models built out of steady-state ambient conditions, leading to the conclusion of an instantaneous adjustment of the spray to its environment, validating: (1) the hypothesis made in 1D spray models; (2) the use of empirical models in unsteady-state environment when obtained under steady-state conditions.The authors wish to acknowledge the Spanish Ministry of Education and Science for the financial support through the OPTICOMB project (TRA2007-67961-C03-01) and Jean-Guillaume Nerva's Grant (BES-2008-004420). The authors would also like to thank Daniel Lerida for the management of the facility and his assistance in data acquisition.Pastor Soriano, JV.; García Oliver, JM.; Nerva, J.; Giménez, B. (2011). Fuel effect on the liquid-phase penetration of an evaporating spray under transient diesel-like conditions. Fuel. 90(11):3369-3381. https://doi.org/10.1016/j.fuel.2011.05.006S33693381901
- …